Микроволновая спектроскопия - область радиоспектроскопии, в к-рой спектры атомов и молекул в газовой фазе исследуют в диапазоне от дециметровых
до субмиллиметровых длин волн (108 - 1013 Гц).
Объектами микроволновой спектроскопии являются вращательные и НЧ колебательные
спектры молекул, молекулярных
ионов, комплексов и радикалов, тонкая и сверхтонкая структура молекулярных спектров,
спектры тонкой и сверхтонкой структуры атомов и ионов, электронные спектры возбуждённых
атомов (см. Молекулярные спектры, Атомные спектры).- В микроволновых
спектрометрах используют монохроматические, перестраиваемые по частоте источники
излучения - генераторы СВЧ (напр., лампы
обратной волны, генераторы на основе Ганна эффекта; )микроволновые
спектры атомов и молекул регистрируют приёмниками СВЧ, оптоакустич. приёмниками,
детекторами атомных и молекулярных пучков и др., что обусловлено разнообразием
объектов и методов и желанием достигнуть в каждом случае макс, чувствительности
спектрометров.
Применение когерентных источников излучения позволяет
наблюдать методами микроволновой спектроскопии весьма узкие спектральные линии, т. е. достигать высокого
спектрального разрешения. Типичные ширины линий, обусловленные столкновениями
частиц в газе,- от 10 МГц до 1 МГц при давлениях от 1 до 102 Па.
При разрежении газа ширины линий определяются Доплера эффектом при движении
частиц и соударениями со стенками поглощающей ячейки, они составляют в микроволновом
диапазоне от 1 МГц до 0,1 МГц. Для дальнейшего сужения линий применяют ряд способов
устранения доплеровского уширепия. Ширины линий в таких субдоплеровскнх спектрометрах
определяются временем взаимодействия частиц с полем излучения (см. Неопределённостей
соотношения). В молекулярных и атомных пучках, перпендикулярных направлению
распространения излучения, ширины линий достигают 10-0,2 КГц, а при пленении
частиц в областях размером менее длины волны линии сужаются до 0,01 Гц (т. н.
сужение Дикке). Относит, погрешности измерения частот спектральных линий равны
10-8 в газовых спектрометрах и достигают 10-10 и 10-13
в субдоплеровских спектрометрах.
Благодаря малой ширине наблюдаемых спектральных линий и высокой точности
измерения частот радиометодами микроволновой спектроскопии используют для
получения наиболее точных значений ряда атомных и молекулярных констант (напр.,
моментов инерции молекул, величин сверхтонкого расщепления уровней энергии в
атомах, дипольных моментов молекул и др.) и наблюдения малых смещений и расщеплений
уровней энергии, обусловленных тонкими взаимодействиями частиц (напр., эффектов
нежёсткости молекул, лэмбовского сдвига уровней в атомах, квадрупольной
и магн. структуры уровней в молекулах).
В простейшем микроволновом спектрометре излучение
генератора СВЧ пропускают через волноводную ячейку, заполненную исследуемым
газом, и направляют на приёмник излучения, сигнал к-рого, пропорциональный принимаемой
мощности, подаётся на регистрирующий прибор. Линии поглощения в газе регистрируют
по уменьшению приходящей на приёмник мощности излучения определённых частот.
Для повышения чувствительности спектрометров используют модуляцию частот спектральных
линий, действуя на частицы электрич. (Штарка эффект)или магн. (Зеемана
эффект)полем и выделяя сигнал на частоте модуляции. В миллиметровом и субмиллиметровом
диапазонах используют модуляцию частоты излучения источника и приём сигналов
от линий поглощения по модуляции давления исследуемого газа при поглощении им
моду-' лиров. излучения (см. Субмиллиметровая спектроскопия ).Большой
запас чувствительности позволяет исследовать, напр., спектры нестабильных молекул,
запрещённые спектры молекул, а также применять M. с. для молекулярного и изотопного
спектрального анализов. Повышения чувствительности в разл. микроволновых спектрометрах
достигают также накачкой вспомогат. излучения (т. н. двойной резонанс ),сортировкой
частиц по состояниям (см. Молекулярный генератор)и др.
M. с. применяют для получения из вращат. спектров сведений о строении и динамике молекул, их хим. и изотопном составе, а при действии электрич. или магн. полей - дипольных моментов, поляризуемостей и магн. восприимчивостей молекул. Из исследований сверхтонкой структуры молекулярных спектров получают сведения о квадрупольных и магн. моментах ядер и о внутр. полях в молекуле. Исследования уширения и сдвига молекулярных и атомных линий при соударениях в газе дают информацию о взаимодействиях частиц. Точное измерение частот переходов в простейших квантовых системах позволяет оценить точность фундам. теорий. Микроволновые спектральные линии нек-рых молекул и атомов наблюдают в космич. пространстве с помощью радиотелескопов, они дают информацию о составе межзвёздного вещества, хим. процессах и физ. условиях в разл. областях космич. пространства.
А. Ф. Крупное
Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.
Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.
Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.
Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.