к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Полупроводниковый детектор

Полупроводниковый детектор - детектор частиц, осн. элементом к-рого является p-n-переход. Полупроводниковый детектор состоит из слоя полупроводника с нанесёнными на него с обеих сторон металлич. электродами, на к-рые подаётся напряжение. При попадании частицы или g-кванта в полупроводник в нём в результате ионизации образуются неравновесные носители заряда - электроны и дырки, к-рые под воздействием электрич. поля перемещаются к электродам. В результате в электрич. цепи, соединённой с полупроводниковым детектором, возникает импульс тока 4005-139.jpg где 4005-140.jpg- заряд, наводимый на электродах. Импульс тока преобразуется в импульс напряжения, амплитуда к-рого пропорциональна энерговыделению4005-141.jpgчастицы в пол.упроводнике.

Необходимым условием, обеспечивающим возможность измерения заряда DQ, возникающего в полупроводниковом детекторе под действием ионизующей частицы, является малая величина темнового тока4005-142.jpgпротекающего через полупроводниковый детектор в отсутствие ионизации. Это означает, что полупроводник должен обладать высоким уд. сопротивлением р.

Если флуктуации темнового тока 4005-143.jpgза время собирания носителей4005-144.jpgсравнимы с числом носителей 4005-145.jpg созданных в объёме полупроводникового детектора частицей, то выделение полезного сигнала оказывается невозможным. Чем меньше 4005-146.jpgи чем с большей точностью необходимо измерить DQ, тем большим сопротивлением r должен обладать полупроводник. Для измерения энерговыделения 4005-147.jpg= 1 МэВ с точностью 1% необходимо 4005-148.jpg Ом·см.

Число носителей заряда 4005-149.jpg возникающих в полупроводниковом детекторе при энерговыделении4005-150.jpgравно 4005-151.jpg где4005-152.jpg- энергия, необходимая для образования пары электрон - дырка. Т. к. в полупроводниках4005-153.jpg3 эВ, а в газах 4005-154.jpg 30 эВ, то в полупроводниковом детекторе при том же 4005-155.jpgсоздаётся в 10 раз больше носителей заряда, чем в газовой ионизац. камере. В этом заключается одно из важных преимуществ полупроводникового детектора перед газовыми детекторами.

Время жизни носителей заряда4005-156.jpgдолжно превышать время сбора Dt заряда на электроды (иначе сбор будет не полным). В полупроводниках, используемых для полупроводникового детектора, времена жизни свободных электронов и дырок 4005-157.jpg составляют неск. мс, что достаточно для полного сбора носителей. Скорость4005-158.jpgсбора носителей или время их сбора Dt определяются подвижностью носителей заряда m и напряжённостью электрич. поля Е:4005-159.jpg В случае однородного электрич. поля 4005-160.jpg где W - толщина чувствит. области. Материал для полупроводникового детектора не должен содержать большого кол-ва примесных центров, к-рые приводили бы к захвату носителей заряда, образующихся при ионизации.

В природе не существует веществ, к-рые имели бы значения4005-161.jpgнеобходимые для полупроводникового детектора Диэлектрики обладают высоким р, но очень малым т, поэтому на их основе возможно создание детекторов лишь с тонкой чувствит. областью. Так, на основе алмазов созданы детекторы с толщиной рабочей области D4005-162.jpg300 мкм. Полупроводники обладают нужными4005-163.jpgоднако их сопротивление r (даже при высокой степени очистки от примесей) оказывается ниже требуемого для обеспечения малого темнового тока (табл.).

Характеристики некоторых полупроводников, применяемых для полупроводниковых детекторов





4005-164.jpg

4005-165.jpg

Вещество (Т=300 К)

ность, г/см3

4005-166.jpg эВ

4005-167.jpg эВ

электроны

дырки

электроны

дырки

Si

2,33

1,12

3,61

1350

480

2·10-5

2·10-5

Ge (77 К)

5,33

0,79

2,98

3,6·104

4,5·104

2·10-5

2·10-5

CdTe

6,06

1,47

4,43

1000

80

10-6

2·10-7

GaAs

5,32

1,42

4,2

8·103

450

10-6

10-8







10-9

10-9

HgI2

6,4

2, 13

4,2

100

4

10-6

10-6

Необходимые условия реализуются в области р - п-перехода, обеднённой носителями, где р на неск. порядков выше, чем вне перехода. Обычно толщина области р - n-перехода W, обеднённая носителями заряда,- чувствит. область полупроводникового детектора - мала (4005-168.jpgсм). Практич. значения такой р - га-переход не представляет, т. к. пробеги R заряж. частиц, как правило, существенно больше и в области р - n-перехода выделяется малая часть энергии частицы. Для увеличения W на р - n-переход подают обратное смещение U, к-рое увеличивает размер обеднённой области в соответствии с соотношением4005-169.jpgгде b - константа, характеризующая полупроводник. Так, для 4005-170.jpg b = 0,5, для 4005-171.jpg Ъ = 0,3, для 4005-172.jpg b=1, для 4005-173.jpg b = = 0,65. При этом через р - га-переход течёт темновой ток разл. происхождения: за счёт тепловой генерации электронов и дырок4005-174.jpgгде4005-175.jpg- ширина запрещённой зоны в полупроводнике; ток диффузии 4005-176.jpg за счёт неравномерной концентрации носителей:

ток поверхностной утечки4005-177.jpg Для уменьшения 4005-178.jpg необходимы материалы с достаточно большой4005-179.jpg (в случае Ge - охлаждение). Для уменьшения4005-180.jpg4005-181.jpg выбирают спец. геометрию полупроводникового детектора, используют обработку поверхности и разл. покрытия. Наиб. употребит. материалами для полупроводникового детектора являются Si и Ge.

Типы полупроводниковых детекторов. В зависимости от способа создания p - n-перехода различают поверхностно-барьерные, диффузионные и ионно-легированные полупроводниковые детекторы. В поверхностно-барьерных полупроводниковых детекторах p-n-переход создаётся нанесением на поверхность полупроводника металла испарением в вакууме (см. Шоттки барьер; рис. 1). При определ. значениях r и U можно обеспечить полное обеднение носителями и получить детекторы с чувствит. областью, равной всей толщине пластинки полупроводника, вплоть до 2-3 мм. Нечувствит. областями в таких детекторах являются переднее и заднее окна, суммарная толщина к-рых может быть доведена до долей мкм.

В диффузионных полупроводниковых детекторах переход создаётся диффузией донорных (или акцепторных) атомов в полупроводник с проводимостью р- или n-типов.

4005-182.jpg

Толщина входного окна в диффузионных детекторах существенно больше, чем в поверхностно-барьерных, однако переход менее чувствителен к внеш. условиям.

В ионно-легированных полупроводниковых детекторах переход создаётся внедрением примесных атомов в кристалл при облучении его пучком ионов (см. Ионная имплантация). Обычно внедряется бор в полупроводник n-типа и фосфор в полупроводник р-типа (см. Легирование полупроводников ). Толщина входного окна в ионно-легированных полупроводниковых детекторов может достигать величины4005-183.jpg1 мкм. Для обеспечения высоких характеристик ионно-легированных полупроводниковых детекторов необходим отжиг радиационных дефектов, к-рые возникают при внедрении ионов.

Существ. увеличение обеднённой области в полупроводниковых детекторах достигается компенсацией исходного материала до собственной (г) проводимости с помощью дрейфа ионов Li в поле r - re-перехода. На основе pin-диода созданы полупроводниковые детекторы с толщиной чувствит. области W = 10-15 мм и с объёмом V = 100-1504005-184.jpg (рис. 2).

Рис. 2. Конфигурации германиевых детекторов, активированных Li (pin-структура): а - коаксиального, б - планарного.

4005-185.jpg


Из-за относительно высокой подвижности ионов Li в Ge и Si при Т = 304005-186.jpg для литий-дрейфовых полупроводниковых детекторов необходима (постоянно) низкая те.мп-ра, для Ge(Li)-детекторов необходима темп-pa жидкого азота, для Si(Li)-детекторов достаточна Т = (-20)- (-10)4005-187.jpgРазработаны методы очистки Si и Ge до состояния, близкого к собств. проводимости (для Ge разностная концентрация р- и п-примесей составляет 4005-188.jpg На этой основе созданы т. н. HPGe-детекторы (high purity Ge), для к-рых нет необходимости охлаждения во время хранения, но необходимо охлаждение при работе с целью уменьшения шумов.

Преимущества полупроводниковых детекторов по сравнению с др. детекторами частиц: пропорциональность сигнала энерговыделению 4005-189.jpg частицы в веществе полупроводникового детектора в широком диапазоне 4005-190.jpg (неск. порядков), малая толщина входного окна, нечувствительность к магн. полю, высокое энергетич. разрешение за счёт малости 4005-191.jpg компактность и др. Однако реализация этих характеристик требует применения сложных электронных устройств. По назначению полупроводниковые детекторы можно подразделить на спектрометрические, временные, координатные.

Спектрометрические полупроводниковые детекторы. Энергетич. разрешение полупроводниковых детекторов определяется: статистич. флуктуациями в числе носителей заряда4005-192.jpgпотерями в собранном заряде за счёт рекомбинации носителей заряда, захвата их ловушками при движении к электродам 4005-193.jpg флуктуациями в потерях энергии во входном окне полупроводникового детектора dок; шумами электронных устройств4005-194.jpg и шумами темнового тока4005-195.jpgПолное разрешение полупроводниковых детекторов по энергии равно:

4005-196.jpg

Компонента 4005-197.jpg связана с механизмом ионизац. потерь и определяет предельное разрешение. Полупроводниковый детектор обладает наилучшим разрешением среди детекторов ионизац. типа. Если вся энергия 4005-198.jpg частицы выделяется в объёме полупроводникового детектора, то энергетич. разрешение, определяемое статистич. флуктуациями в числе носителей, 4005-199.jpg= 2,364005-200.jpg где F - т. н. фактор Фано, учитывающий корреляцию в числе носителей. Теоре-тич. оценки дают F = 0,09-0,30 для Ge и 0,05-0,02 для Si. Эксперим. значения F для Ge и Si равны 0,134005-201.jpg0,02, при этом есть тенденция к уменьшению F с улучшением качества полупроводникового детектора и электронных устройств. Спектрометрия b-частиц (электронов и позитронов) с энергиями 4005-202.jpg 1 МэВ, к-рые имеют пробеги в Si R4005-203.jpg1 мм, осуществляется как поверхностно-барьерными полупроводниковыми детекторами, так и Si(Li)-детекторами. В области энергий 4005-204.jpg< 100 кэВ) применение полупроводниковых спектрометров предпочтительнее по сравнению с др. бета-спектрометрами (рис. 3). Особенностью регистрации электронов с энергиями 4005-205.jpg > 100 кэВ является появление в процессах взаимодействия электронов с веществом g-квантов, к-рые могут уйти из объёма полупроводникового детектора (тормозное излучение). Это приводит к неполному выделению энергии первичного электрона в полупроводниковом детекторе, к появлению "пьедестала" в регистрируемом спектре и к уменьшению тем самым эффективности регистрации по пику полного поглощения. С увеличением энергии электронов вклад этих процессов растёт, и при энергиях4005-206.jpg10 МэВ спектрометрия электронов по пику полного поглощения теряет смысл, т. к. торможение электронов в объёме полупроводникового детектора приводит к образованию ливней.


4005-207.jpg

Для больших4005-208.jpgвплоть до нсск. сотен МэВ, используются т. н. ливневые спектрометры на основе слоистых систем, включающих слои тяжёлого вещества с высоким ат. номером Z (U, Pb), в к-рых происходит активное размножение электронов и g-кван-тов, и слои, состоящие из кремневых полупроводниковых детекторах (в виде мозаики для обеспечения большой площади), в к-рых регистрируются вторичные электроны и g-кванты. Энергетич. разрешение слоистых ливневых спектрометров4005-209.jpgпропорционально4005-210.jpg

Спектрометрия л- и К-мезонов, протонов и лёгких ядер для небольших энергий, при к-рых пробеги частиц не превышают неск. мм, осуществляется с помощью Si-детекторов. Для малых 4005-211.jpg пз-за большой величины удельных ионизационных потерь 4005-212.jpgсущественна потеря частицей энергии во входном окне полупроводникового детектора. Поэтому здесь предпочтительнее использовать поверхностно-барьерные кремниевые детекторы. Для 4005-213.jpg частиц с4005-214.jpg=5 МэВ лучшее разрешение, постигнутое с использованием Si, составляет4005-215.jpg что всё же в 4005-216.jpg раза превышает предельное разрешение, обусловленное статистпч. флуктуацпями в чисте носителей4005-217.jpg

Для идентификации частиц по массе используется телескоп из двух (или более) полупроводниковых детекторов - т. н. система (см. Телескоп счётчиков). Поскольку4005-218.jpgамплитуда сигнала4005-219.jpgдетектора пропорциональна4005-220.jpg

4005-221.jpg то произведение амплитуд от 4005-222.jpg-детекторов оказывается пропорциональным массе m регистрируемой частицы.

Для спектрометрии длинопробежных частиц (с пробегами R > 5 мм в Si) применяют как одиночные "толстые" Si- и Ge-детекторы спец. конструкции, так и телескопы "тонких" полупроводниковых детекторов, имеющих суммарную толщину 4005-223.jpg Применение телескопов предпочтительнее перед одиночным "толстым" полупроводниковым детектором, т. к.: 1) возможна идентификация частицы по массе по измеренным 4005-224.jpg в отдельных полупроводниковых детекторов; 2) возможен отбор случаев, когда частица испытывает ядерное взаимодействие или рассеяние; 3) лучшие временные характеристики. Однако с увеличением энергии частицы (пробега Я) вероятность ядерного взаимодействия частицы с веществом полупроводникового детектора растёт, что приводит к появлению "пьедестала" в спектре амплитуд. Предельные энергии, когда ещё применяют телескопы полупроводниковых детекторов, 4005-225.jpg МэВ (для протонов).

Спектрометрия тяжёлых ядер и осколков деления ядер имеет ту особенность, что в этом случае высока уд. ионизация. Это приводит к более медленному разделению положит, и отрицат. зарядов и, следовательно к большой вероятности рекомбинации зарядов на пути частицы, из-за чего возникает ошибка в определении энергии. Степень рекомбинации существенно зависит от ориентации траектории (трека) относительно элек-трич. поля Е. Ошибка меньше для трека, расположенного перпендикулярно силовым линиям электрнч. поля. Для уменьшения эффекта рекомбинации необходимо увеличивать напряжение U на полупроводниковом детекторе. При спектрометрии тяжёлых ядер и осколков деления важно также иметь мин. толщину входного окна.

Спектрометрия нейтронов осуществляется либо по протонам отдачп (в этом случае перед полупроводниковым детектором располагают водородсодержащую мишень), либо путём регистрации продуктов ядерной реакции, происходящей в самом полупроводниковом детекторе или в тонком слое нейтронно-чувствит. материала, расположенного между двумя полупроводниковыми детекторами. В последнем случае обычно используются реакции:

4005-226.jpg 4005-227.jpg

(см. нейтронные детекторы).

Для спектрометрии рентгеновских и g-квантов при 4005-228.jpg используются пленарные Si-детекторы. Для4005-229.jpg> 100 кэВ применяются коаксиальные Ge(Li)-детекторы, а также HPGe-детекторы (до4005-230.jpg10 МэВ); Ge(Li)-детекторы обладают наилучшим разрешением по энергии: 4005-231.jpg= 1,7 кэВ для 4005-232.jpg= 1 МэВ (рис. 4).


Рис. 4. Зависимость разрешающей способности от энергии g-квантов для С g-спектрометров разных типов.


4005-233.jpg


С ростом4005-234.jpgсм. рис 5) эффективность регистрации, осуществляемой по пику полного поглощения, падает, т. к. растёт вклад комптоновского фона, что затрудняет выделение слабых линий при исследовании многолинейчатых g-спектров. В качестве гамма-спектрометров используются также полупроводниковые детекторы на основе CdTe, GaAs, НgТе. Благодаря большому Z такие детекторы имеют большую эффективность регистрации (чем Ge-детекторы), но худшее энергетич. разрешение (из-за большей величины4005-235.jpgтабл.). Эти полупроводниковые детекторы используются также для регистрации сцинтилляц. излучения вместо фотоэлектронного умножителя в комбинации сцинтил-лятор - фотодиод (см. Сцинтилляционный детектор). Для4005-236.jpg> 10 МэВ процесс поглощения энергии в полупроводниковом детекторе приобретает ливневый характер; вплоть до энергий порядка сотен МэВ для спектрометрии g-квантов используются ливневые спектрометры на основе полупроводниковых детекторов с радиаторами с большим4005-237.jpg

Полупроводниковые детекторы обладают хорошим временным разрешением, сравнимым в нек-рых случаях с разрешением сцин-тилляц. детекторов. Для планарных полупроводниковых детекторов с W = 1 мм время сбора носителей4005-238.jpg определяющее временное разрешение, порядка 10 нc.


4005-239.jpg


Координатные полупроводниковые детекторы изготовляются на основе Si. В т. н. резистивном полупроводниковом детекторе координата c прохождения частицы через полупроводниковые детекторы определяется по соотношению амплитуд сигналов (Е и Ex/l) снимаемых с разных сторон полупроводникового детектора, на одной стороне к-рого нанесена металлич. плёнка, обладающая высокой однородностью по толщине (сопротивлению) Обычно это Аu или Pd (рис. 6). Координатное разрешение составляет доли мм.


4005-240.jpg


В т. н. стриповых (полосковых) детекторах один из электродов выполнен в виде изолиров. полосок. Стриповые полупроводниковые детекторы - одномерные координатные детекторы - обладают координатным разрешением 4005-241.jpg20 мкм определяемым шириной стрипа. В двумерных стрипо-вых полупроводниковых детекторах стрипы нанесены с обеих сторон полупроводникового детектора, но во взаимно перпендикулярных направлениях. Стриповые полупроводниковые детекторы применяются в качестве т. н. вершинных детекторов для выделения случаев рождения и распада короткоживущих4006-1.jpgт. н. очарованных

и прелестных частиц и определения их времён жизни и др. характеристик (см. Комбинированные системы детекторов, Элементарные частицы). Дальнейшее развитие привело к созданию т. н. пиксельных детекторов с размером ячейки (пикселя) 304006-2.jpg30 мкм на основе рin-структуры. Для сокращения каналов электроники разработана полупроводниковая дрейфовая камера на основе pnp-структуры (рис. 7). Электрич. поле возрас-

4006-3.jpg

Рис. 7. Дрейфовая камера.

тает с номером стрипа, а крайняя левая полоска служит анодом. На стрипы подаётся отрицат. потенциал - V по отношению к ср. плоскости, так что электроны стягиваются к ней и движутся к аноду. Дырки же будут собираться на электроды вблизи трека частицы. Координата определяется по времени дрейфа электронов от места их возникновения до анода. Координатное разрешение полупроводниковой дрейфовой камеры составляет 104006-4.jpg20 мкм.

Полупроводниковые детекторы с лавинным усилением заряда имеют внутр. усиление до4006-5.jpgи обладают лучшими временными характеристиками, чем ПЗС-детекторы. Перспективны координатные полупроводниковые детекторы на основе лавинно-пролётных диодов с отрицательной обратной связью.

Радиационная стойкость полупроводникового детектора

Радиационная стойкость полупроводникового детектора зависит от вида, интенсивности и энергии излучения. Полупроводниковые детекторы могут устойчиво работать без ухудшения характеристик при облучении g-квантами дозой до4006-6.jpgрад. На неск. порядков более чувствительны полупроводниковые детекторы к облучению тяжёлыми за-ряж. частицами, а также медленными нейтронами. Ухудшение энергетич. разрешения возникает при потоке протонов (с энергией 5-10 МэВ) порядка4006-7.jpg быстрых нейтронов -4006-8.jpgэлектронов (с энергией 2-5 МэВ) -4006-9.jpg

Литература по полупроводниковым детекторам

  1. Semiconductor detectors, ed. by G. Bertolini, A. Coche, Amst., 1968;
  2. Vertex detectors, ed. by F. Villa, N. Y., 1988;
  3. Акимов Ю. К., Каланин А. И., Кушнирук В. Ф., Полупроводниковые детекторы в экспериментальной физике, М., 1989;
  4. Клайнкнехт К., Детекторы корпускулярных излучений, пер. с нем., М., 1990.

Г. А. Сокол

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что, когда некоторые исследователи, пытающиеся примирить релятивизм и эфирную физику, говорят, например, о том, что космос состоит на 70% из "физического вакуума", а на 30% - из вещества и поля, то они впадают в фундаментальное логическое противоречие. Это противоречие заключается в следующем.

Вещество и поле не есть что-то отдельное от эфира, также как и человеческое тело не есть что-то отдельное от атомов и молекул его составляющих. Оно и есть эти атомы и молекулы, собранные в определенном порядке. Также и вещество не есть что-то отдельное от элементарных частиц, а оно состоит из них как базовой материи. Также и элементарные частицы состоят из частиц эфира как базовой материи нижнего уровня. Таким образом, всё, что есть во вселенной - это есть эфир. Эфира 100%. Из него состоят элементарные частицы, а из них всё остальное. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution