к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Деление ядер

Деление ядер - процесс, при к-ром из одного атомного ядра возникают 2 (реже 3) ядра - осколка, близких по массе. Этот процесс энергетически выгоден для всех 1119929-533.jpg-стабильных ядер с массовым числом А>100.

Историческая справка. Д. я. обнаружено в 1939, когда О. Ган (О. Hahn) и Ф. Штрасман (F. Strassmann) однозначно доказали, что в результате взаимодействия нейтронов с ядрами урана U появляются радиоакт. ядра с массами и зарядами примерно вдвое меньшими, чем масса и заряд ядра U. В том же году Л. Майтнер (L. Meitner) и О. Фриш (О. Frisch [I]) для обозначения этого процесса ввели термин "Д. я." и отметили, что при этом выделяется огромная энергия, а Ф. Жолио-Кюри (F. Joliot-Curie) с сотрудниками и одновременно Э. Ферми (E. Fermi) с сотрудниками обнаружили, что при делении происходит испускание неск. нейтронов (нейтроны деления). Это послужило основой для выдвижения идеи самоподдерживающейся ядерной цепной реакции деления и использования Д. я. в качестве источника энергии. Основой совр. ядерной энергетики служит деление ядер 235U, 239Pu под действием нейтронов (см. Ядерный реактор).

Интерпретацию Д. я. как деления однородной заряж. жидкой капли под действием кулоновских сил предложили в 1939 одновременно Я. И. Френкель, H. Бор (N. Bohr) и Дж. Уилер (J. Wheeler [2]). Капельная модель деления не потеряла значения до сих пор (см. Капельная модель ядра). В этой теории ядро в процессе деления изменяет форму: из сферического оно деформируется сначала в вытянутый сфероид, у к-рого затем на экваторе образуется перетяжка. Возникает гантеле-образная фигура, и, когда перетяжка рвётся, образуются осколки. Конкуренция сил поверхностного натяжения, удерживающих ядро от развала, и кулоновских расталкивающих сил в капельной модели определяется параметром, наа. параметром делимости, к-рый пропорционален Z2/A, где Z - ат. номер элемента. С увеличением параметра делимости растёт нестабильность атомного ядра относительно деления [3, 4].

1119929-534.jpg

Рис. 1. Зависимость вероятности вынужденного деления ядер под действием дейтронов 1119929-535.jpg1119929-536.jpg от энергии 1119929-537.jpg возбуждения делящегося ядра; 1119929-538.jpg - сечение деления, 1119929-539.jpg - полное сечение.


В дальнейшем было обнаружено Д. я. под действием 1119929-540.jpg -частиц, протонов, 1119929-541.jpg-квантов и др. Д. я., происходящее под действием разл. частиц, наз. вынужденным. Вынужденное Д. я. является разновидностью ядерных реакций и обозначается f, напр. деление 230Th под действием нейтронов записывается в виде 230Th(n, f). В 1940 К. А. Петржак и Г. H. Флёров открыли самопроизвольное (спонтанное) Д. я. (см. ниже).

Вероятность деления. Вынужденное деление, в частности Д. я. нейтронами, конкурирует с др. ядерными реакциями под действием нейтронов. Вероятность вынужденного деления определяется отношением сечения деления 1119929-542.jpg к полному сечению захвата нейтрона 1119929-543.jpg Вероятность P вынужденного деления зависит от энергии 1119929-544.jpg возбуждения образующегося составного ядра, к-рая пропорциональна энергии 1119929-545.jpg налетающей частицы (рис. 1). Эта зависимость имеет пороговый характер, причём для четно-чётного ядра 238U порог 1119929-548.jpg превышает на 1 МэВ энергию связи нейтрона в ядре, а для четно-нечётных ядер 235U, 239Pu порог деления примерно совпадает с энергией связи нейтрона. Это приводит к большому сечению деления 235U и 239Pu при малой кинетич. энергии бомбардирующих нейтронов (рис. 2), что и используется в ядерных реакторах на тепловых нейтронах.

1119929-546.jpg

Рис. 2. Зависимость сечения деления ядер sf от энергии налетающих нейтронов 1119929-547.jpg

В нек-рых случаях наблюдается немонотонный ход зависимости сечения деления 1119929-549.jpg от энергии налетающей частицы 1119929-550.jpg, обусловленный резонансной зависимостью вероятности деления P образующегося составного ядра от энергии его возбуждения 1119929-551.jpg . В случае 230Th (n, f) ширина резонанса (делительная ширина) порядка 30 кэВ (рис. 3). При бомбардировке нейтронами малых энергий удаётся наблюдать расщепление широких резонансов на несколько более узких, что позволяет определять уровни составного ядра. Из сравнения энергетич. зависимости полного сечения 1119929-552.jpg захвата нейтрона ядром 240Pu (рис. 4, а) и сечения деления1119929-555.jpg (рис. 4, б) следует, что уровни составного ядра с большими делительными ширинами образуют группы. Cp. расстояние между группами ~650 эВ, ср. расстояние между уровнями составного ядра ~15 эВ. T. о., в сечении деления 240Pu возникает чётко выраженная резонансная структура, к-рая наблюдается и для нек-рых др. ядер (см. ниже).

1119929-553.jpg

Рис. 3. Зависимость сечения деления 230Th от энергии нейтронов 1119929-554.jpg.


Спонтанное деление. Спонтанно делящиеся изомеры. С ростом Z уменьшается стабильность ядра относительно процесса деления. Это приводит к заметному спонтанному делению ядер из осн. состояния. Именно неустойчивость относительно деления определяет граничное Z существующих в природе элементов (см. Трансурановые элементы).

Спонтанное Д. я. является разновидностью радиоактивного распада и характеризуется периодом полураспада 1119929-556.jpg, связанного с вероятностью спонтанного деления. На рис. 5 представлены периоды полураспада 1119929-558.jpg относительно деления четно-чётных ядер в зависимости от параметра делимости Z2/A . Для более тяжёлых ядер видна немонотонная зависимость, связанная с проявлением оболочечных эффектов (см. Оболочечная модель ядра).

1119929-557.jpg

Рис. 4. Резонансная структура сечения деления 240Pu+n: a - полное сечение реакции захвата ядром нейтрона; б - сечение деления.


В левом нижнем углу показаны периоды полураспада т. н. спонтанно делящихся изомеров U и Pu (см. Изомерия ядерная), к-рые образуются в ядерных реакциях. Наиб. период полураспада (1119929-559.jpg=1,4*10-2 с) из известных спонтанно делящихся изомеров принадлежит нечётно-нечётному ядру 242Am. Выход из реакций делящихся изомеров невелик, а его зависимость от энергии бомбардирующих частиц имеет пороговый характер. Величина порога относительно энергии возбуждения составляет 2,5-3 МэВ. Следовательно, спонтанно делящиеся изомеры имеют сравнительно большую энергию возбуждения. Одновременно имеет место запрет на распад этого состояния путём излучения 1119929-561.jpg -квантов.


1119929-560.jpg

Рис. 5. Зависимость периодов спонтанного деления четно-чётных ядер от параметра делимости.

Барьер деления. При большой энергии возбуждения потенц. энергия ядра ведёт себя подобно энергии деформации равномерно заряженной жидкой капли. Чтобы ядру разделиться, т. е. приобрести форму, предшествующую разрыву, оно должно преодолеть энергетич. барьер А, наз. барьером деления (рис. 6, а). Эту энергию в случае вынужденного деления ядро получает извне, напр. при захвате нейтрона. В случае спонтанного деления происходит туннельное просачивание через барьер (см. Туннельный эффект).

Когда энергия возбуждения ядра невелика, квантовые оболочечные эффекты приводят к осцилляциям потенц. энергии относительно параметра деформации ядра. При этом барьер деления приобретает двугорбый (рис. 6, б)или трёхгорбый (рис. 6, в) вид. Такое поведение потенц. энергии ядра позволяет наиб. просто объяснить как существование спонтанно делящихся изомеров, так и широких резонансов в зависимости сечения деления от энергии возбуждения ядра, а также группирование уровней составного ядра, обладающих большой делительной шириной.

1119929-562.jpg

Рис. 6. Потенциальная энергия V ядра как функция параметра 1119929-563.jpg , характеризующего его деформацию в процессе деления. Внизу - схематическое изображение эволюции формы ядра в процессе деления.


Если проницаемость барьеров А и В невелика, то состояния ядра можно классифицировать по их принадлежности либо к яме I, либо к яме II. В свою очередь, состояния, принадлежащие определ. яме, как состояния сложной многочастичной структуры, можно разделить на простые (одночастичные) и коллективные состояния (вибрац. уровни) (см. Коллективные возбуждения ядер, Колебательные возбуждения ядер). Осн. состоянием делящегося ядра является наинизшее состояние в яме 7, в то время как наинизшее состояние в яме II соответствует спонтанно делящемуся изомеру. Состояния, принадлежащие яме II, имеют большую делительную ширину, определяемую проницаемостью наружного барьера В. Это означает, что ядро в этих состояниях может находиться достаточно долго, пока благодаря туннельному переходу через барьер В оно разделится на 2 осколка. Распад спонтанно делящегося изомера в основное состояние ядра с излучением g-квантов запрещён из-за малой проницаемости внутр. барьера А [5].

Широкий резонанс в сечении деления (рис. 3) обусловлен связью сложных состояний ядра в яме I с колебат. состояниями в яме II. Расщепление этого резонанса па ряд более узких (наблюдаемое экспериментально) обусловлено состояниями ядра на вершине барьера В с разл. значениями угл. момента ядра I и его проекции К на ось симметрии ядра (см. Деформированные ядра).

Предполагается, что делящееся ядро на вершинах барьеров А и В имеет разные переходные состояния, свойства к-рых обусловлены формой ядра. На барьере А ядро не обладает аксиальной симметрией, т. е. величина К не сохраняется, но зато есть зеркальная симметрия относительно плоскости, перпендикулярной наиб. оси ядра. На барьере В ядро имеет аксиальную симметрию, так что К сохраняется, но нарушена зеркальная симметрия (грушевидная форма ядра). Здесь уже существует асимметрия масс будущих осколков. Поэтому на барьере В состояния ядра с разной чётностью имеют разную энергию. Эти особенности формы ядра на вершине барьеров A и B играют важную роль при теоретич. описании угл. распределений осколков деления [6]. Характер зависимости сечения деления от энергии возбуждения 1119929-564.jpg ядра при малых 1119929-565.jpg сильно изменяется от ядра к ядру, т. к. вероятность деления зависит от положения уровней в яме II и их структуры.

Распределение осколков деления по массам. Осн. типом деления является деление на 2 осколка. Наиб. характерная его особенность при небольшой энергии возбуждения - асимметрия распределения осколков по массе. Для деления 235U отношение ср. масс тяжёлого и лёгкого осколков ~1,5. В этом случае распределение осколков по массам имеет двугорбый вид (рис. 7). С увеличением энергии возбуждения возрастает вероятность симметричного деления, а вероятность асимметричного изменяется очень слабо. Для большой энергии возбуждения наиб. вероятным становится симметричное деление, т. е. распределение по массам становится одногорбым.

1119929-566.jpg

Рис. 7. Распределение осколков по массе для деления 235U+n в зависимости от энергии нейтронов 1119929-567.jpg (в МэВ); N- процентное содержание ядер - осколков с данным А (выход массы).


Отношение выхода масс в "пике" и "провале" распределения зависит также от Z2/A делящегося ядра. Для деления нейтронами 230Th оно 5*104, для 235U - 6*102, для спонтанного деления 254Cf - 150. С ростом Z и А целящегося ядра "пик" тяжёлого осколка в массовом распределении стоит на месте, а "пик" лёгкого осколка приближается к "пику" тяжёлого. Для спонтанного деления 258Fm наблюдается одногорбое распределение, т. е. наиб. вероятно симметричное деление.

Сложная картина распределения осколков по массам наблюдается при делении относительно лёгких ядер. При делении 226Ra протонами с энергией 11 МэВ наблюдается трёхгорбое распределение осколков по массам - один горб соответствует симметричному, два других - асимметричному делению. С ростом энергии возбуждения выход симметричного деления растёт. Для ещё более лёгких делящихся ядер (Bi+d), у к-рых деление становится заметным лишь при энергии возбуждения св. 20 МэВ, распределение осколков по массам симметрично.

Редко (один случай на ~400 случаев деления на 2 осколка) происходит вылет третьей лёгкой заряж. частицы. Наиб. часто вылетают1119929-568.jpg-частицы, а суммарный выход остальных (р, d, t, Li и т. д.) не превышает 15% от выхода 1119929-569.jpg-частиц. Тройное Д. я. наблюдается при высоких энергиях возбуждения.

Распределение осколков по кинетич. энергии. Выделение энергии на 1 акт деления тяжёлого ядра велико и при делении на 2 осколка распределяется в соответствии с данными:

Делящееся ядро

235U

252Cf

Кинетическая энергия осколков, МэВ

168

183

Кинетическая энергия нейтронов, МэВ

5

9

Энергия 1119929-570.jpg-квантов, МэВ

7

8

Энергия 1119929-571.jpg-распада, МэВ

8

8

Полное энерговыделение, МэВ

188

208

Деление тяжёлых ядер на 3 осколка даёт ещё большее энерговыделение. Осн. вклад в энерговыделение вносит кинетич. энергия осколков (до 90%). Энерговыделение определяется кулоновским ускорением осколков и, следовательно, пропорционально величине 1119929-572.jpg делящегося ядра. Эксперим. данные по ср. суммарной кинетич. энергии осколков 1119929-573.jpg пропорциональны этой величине. Величина 1119929-574.jpg практически не зависит от энергии возбуждения. Для небольшой энергии возбуждения 1119930-1.jpg уменьшается как для симметричного, так и для более асимметричного деления по сравнению с 1119930-2.jpg для наиб. вероятного деления. Ширина распределения 1119930-3.jpg25 МэВ.

Распад осколков. Нейтроны деления. В момент образования осколки сильно деформированы и избыток потенц. энергии деформации переходит в энергию возбуждения осколков. Это возбуждение снимается "испарением" нейтронов и излучением 1119930-4.jpg-квантов. Cp. число нейтронов 1119930-5.jpg, испускаемое каждым осколком, сильно зависит от массы осколка. Для всех ядер с Z в области Th, Cf 1119930-8.jpgв общем растёт с массой как для лёгкого, так и для тяжёлого осколка. Наименьшим1119930-9.jpgобладает тяжёлый осколок с массой, близкой к массе дважды магич. ядра (А=132, Z=50). Полное1119930-10.jpgот массы зависит слабо. Наблюдается сильная корреляция1119930-11.jpg и суммарной кинетич. энергии осколков. Величина 1119930-12.jpg увеличивается с ростом Z делящегося ядра. Для спонтанного деления v меняется от 2 для Pu до примерно 4 в случае Fm.

1119930-6.jpg

Рис. 8. Угловое распределение (в лабораторной системе координат) мгновенных нейтронов деления 252Cf; 1119930-7.jpg- угол между направлениями движения нейтрона и лёгкого осколка, n - число нейтронов.


Большинство нейтронов деления испускается за время <4*10-14 с. Эти нейтроны, наз. мгновенными, испаряются из осколков изотропно. Из-за движения осколков (в лаб. системе координат) угл. распределение нейтронов относительно импульса лёгкого осколка анизотропно (рис. 8). Ок. 10-15% мгновенных нейтронов имеет изотропное распределение. Обычно эти нейтроны либо вылетают в момент образования осколков, подобно тому, как образуются лёгкие заряж. частицы в тройном делении, либо испаряются не полностью ускоренными осколками. В лаб. системе координат энергетич. спектр хорошо описывается максвелловским распределением.

Излучение 1119930-13.jpg-квантов. После "испарения" нейтронов у осколков остаётся энергия возбуждения (в ср. меньшая, чем энергия связи последнего нейтрона), к-рая уносится 1119930-14.jpg-квантами. Спектр 1119930-15.jpg-квантов из осколков более мягкий, а число1119930-16.jpg-квантов больше, чем при реакции (n, 1119930-17.jpg) (см. Радиационный захват ).Суммарная энергия 1119930-18.jpg-квантов в общем больше, чем половина суммы энергий связи в лёгком и тяжёлом осколках. Эти явления объясняются сравнительно большим ср. угл. моментом осколков (~10 в единицах 1119930-19.jpg), благодаря к-рому возникает анизотропия (10%-15%) угл. распределения 1119930-20.jpg-квантов относительно оси разлёта осколков.

После "испарения" мгновенных нейтронов как лёгкие, так и тяжёлые осколки всё ещё перегружены нейтронами. Поэтому каждый осколок претерпевает в ср. 3-4 акта 1119930-21.jpg-распада, к-рые могут сопровождаться запаздывающими нейтронами и 1119930-22.jpg-квантами.

Запаздывающие нейтроны составляют ~1% всех нейтронов. Они вылетают из осколков с задержкой от 1 мин до неск. сотых 1 с. Эти нейтроны возникают при 1119930-23.jpg-распаде нек-рых осколков, напр. 87Br и 137I, у к-рых энергия 1119930-24.jpg-распада больше энергии связи нейтрона.

Литература по делению ядер

  1. Фриш О., Уилер Д ж., Открытие деления ядер, "УФН", 1968, т. 96, с. 697;
  2. Уилер Дж., Механизм деления ядер, там же, с. 708;
  3. Халперн И., Деление ядер, пер. с англ., M., 1962;
  4. Хайд Э., Перлман И., Сиборг Г., Ядерные свойства тяжёлых элементов, пер. с англ., в. 5, M., 1969;
  5. Лихман P. Б., Деление ядер, в сб.: Над чем думают физики, в. 10, M., 1974;
  6. Струтинский В. M., Деление ядер, "Природа", 1976. Ki 9;
  7. Данилян Г. В., Несохранение пространственной чётности при делении ядер, "УФН", 1980, т. 131. с. 329.

Г. А. Пик-Пичак

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution