к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Магнитострикция

Магнитострикция (от лат. strictio - сжатие, натягивание), изменение формы и размеров тела при его намагничивании; открыто в железе Дж. П. Джоулем (J. P. Joule, 1842). Явление M. свойственно всем веществам как сильномагнитным (ферро-, ферри- и антиферромагнетикам), так и диа- и парамагнетикам, поскольку отражает взаимосвязь подсистем атомных магнитных моментов и кристаллической решётки. В сильномагн. веществах M. достигает значит, величины (относит, удлинение3002-1.jpg 10-2). В диа- и парамагнетиках в большинстве случаев M. мала (10-7-10-5), но имеются исключения: Bi и редкоземельные парамагнетики, в к-рых она достигает 10~4. Существует ряд родственных M. явлений: спонтанная деформация решётки, или спонтанная M., сопутствующая изменению магн. состояния вещества при нагреве (иногда её наз. термострикцией); часть упругой деформации магнитострикц. природы, возникающей при действии механич. напряжений (механострикция); обратное по отношению к M. явление - изменение намагниченности магнетика при действии на него механич. напряжений (маг-нитоупругий эффект, или обратная M.).

В теории магнетизма рассматриваются разл. микро-скопич. механизмы M.: за счёт изменения магн. ди-полъ-диполъного взаимодействия, спин-орбитального взаимодействия, а также взаимодействия анизотропного электронного облака атома переходного элемента с внутрикристаллическим полем ("одноионная" M.) и за счёт изменения обменных сил как между атомами, так и между электронами. В ферро- и ферримагнетиках в диапазоне значений магн. поля, где протекают процессы смещения доменных границ и вращение векторов Ms спонтанной намагниченности (см. Намагничивание ),проявляется анизотропия M. - зависимость её величины и знака от направления в кристалле, при этом M. проявляется в изменении формы кристалла без изменения его объёма (линейная M.). Расчёты линейной M. в кристаллах осуществляют по феноменоло-гич. ф-лам. Так, для расчёта M. ферро- и ферримагн. кристаллов кубич. симметрии, намагниченных до насыщения, применяется ф-ла

3002-2.jpg

где ,si, sj и3002-3.jpg- направляющие косинусы векторов Ms и направления измерения по отношению к рёбрам куба, a1 и a2 - константы анизотропии M., численно равные:

3002-4.jpg

где 3002-5.jpg и 3002-6.jpg- макс, линейные M. соответственно вдоль ребра и пространств, диагонали куба. Для ферро- и ферримагнетиков иной кристаллич. симметрии ф-лы для расчёта анизотропии M. носят более сложный характер. Путём усреднения по различным si, sj, bi и bj может быть получена ф-ла для расчёта M. поликристаллич. образцов (при условии, что a1 и a2 одного знака и близки друг другу по величине). Так, для Ni и сплавов Fe - Ni применима ф-ла

3002-7.jpg

где u - угол между направлением напряжённости магн. поля H и направлением измерения линейной M. внутри поликристаллич. образца. Обычно M. измеряют вдоль направления H (u = 0) и поперёк H (u = 90°), т. е. определяют значения продольной 3002-8.jpg и поперечной3002-9.jpgM. Для большинства ферромагнетиков они имеют разные знаки.

В области парапроцесса в кубич. ферромагнетиках M. проявляется в изменении объёма (объёмная M.), иногда её наз. обменной M., поскольку она обусловлена изменением обменного взаимодействия и обычно велика вблизи Кюри точки. Здесь её зависимость от H может быть рассчитана по феноменологич. ф-лам, вытекающим из термодинамич. теории фазовых переходов или теории молекулярного поля. Вдали от точки Кюри для большинства ферромагнетиков M. пара-процесса мала. Однако в т. н. зонных ферромагнетиках (см. Зонный магнетизм) она очень велика, даже при гелиевых темп-pax. Большая M. парапроцесса характерна для ферро- и ферримагнетиков при разрушении полем H существующих в них неколлинеарных магн. структур, т. к. при этом сильно изменяется обменная энергия.

M. относится к т. п. чётным магн. эффектам, т. к. не изменяет своей величины и знака при изменении направления поля H (или вектора M8) на противоположное.


Рис. 1. Зависимость продольной магнитоетрикции (D//Z) от напряжённости магнитного поля H (1Э = 79,6 А/м) для ряда металлов, их соединений и сплавов.


3002-10.jpg


В пьезомагнетиках (см. Пъезомагнетизм)наблюдается M., линейная по магн. полю. M. исследована во многих поли- и монокристаллич. образцах ферро- и ферримагнетиков. У Fe (рис. 1) продольная M. в слабом магн. поле положительна (удлинение тела), а в более сильном поле отрицательна (укорочение). Для Ni при всех значениях поля продольная M. отрицательна. Большинство сплавов: Fe - Ni, Fe - Со, Fe - Pt и др. имеют положит, продольную M.:3002-11.jpg ~(10-100)*10-6, в то же время в них поперечная M. отрицательна. Для сплавов Fe - Ni т. н. инварного состава (30-45% Ni) при комнатных и даже низких темп-pax продольная и поперечная M. в полях H > Hs (область прозрачности) имеют одинаковые положит, знаки (рис. 2), здесь M. выражается в изменении объёма.


Рис. 2. Продольная (I) и поперечная (II) магнитострикция сплава, содержащего 36% Fe, 64% Ni. В слабых полях H они имеют разные знаки, в сильных (при парапроцессе) - одинаковый знак (здесь магнитострикция носит объёмный характер).


3002-12.jpg

Необычайно высоки M. у нек-рых редкоземельных металлов, их сплавов и соединений: у Tb и Dy, TbFe2 и DyFe2, феррита-граната Tb3Fe5O12 и др. (т. н. гигантская M.). В табл. приведены данные о M. в полях магн. насыщения редкоземельных магнетиков и для сопоставления - значения M. для Fe, Ni и Со.


Гигантская M. обнаружена у ряда соединений урана (U3As4, U3 P4) и др. актинидов. Микроскопич. природа огромной M. редкоземельных и актинидных магнетиков связана с сильным взаимодействием пространственно-анизотропного облака f-электронов атомов с впутрикристаллич. полем.


3002-13.jpg

Исследование M., особенно в области техн. намагничивания, помогает в изысканиях новых магнитных материалов. Так, высокая магн. проницаемость сплавов типа пермаллоя связана с тем, что в них мала энергия магнитоупругой анизотропии вследствие малой величины M. (наряду с малым значением константы магн. кристаллографич. анизотропии). Эффект спонтанной M. влияет на тепловое расширение ферро-, ферри-и антиферромагнетиков, приводя в ряде случаев к компенсации его или к аномально малому коэф. теплового расширения (инвар-эффект). Большие аномалии модулей упругости, возникающие в нек-рых ферро- и анти-ферромагн. сплавах (элинварах) за счёт влияния спонтанной M., приводят к малым значениям температурных коэф. их модулей упругости. Кроме того, при воздействии на ферромагнетики упругих напряжений в них даже при отсутствии внеш. магн. поля происходит перераспределение магн. моментов доменов (в ряде случаев изменяется и абс. величина Af8 домена), что приводит к изменению модулей упругости (явление ме-ханострикции).

В непосредств. связи с механострикцией находится изменение под влиянием внеш. магн. поля модуля упругости ферро-, ферри-и антиферромагн. тел (DE-эффект). M. является очень чувствительным индикатором к разл. магн. процессам и магнитным фазовым переходам, и поэтому её измерения широко используются при магн. исследованиях.

Для измерения M. применяют установки, работающие по принципу механооптич. рычага, позволяющие наблюдать относит, изменения длины образца ~10-6. Ещё большую чувствительность дают радиотехн. и интерференц. методы. Распространён также метод проволочных датчиков, в к-ром на образец наклеивают проволочку (с большим уд. сопротивлением), включённую в одно из плеч измерит, моста. Применяются также разл. методики измерения динамич. M. (в переменных магн. полях).

На явлении M. основано действие магнитострикц. преобразователей: излучателей и приёмников звука, фильтров, стабилизаторов частоты, линий задержки в радиотехн. и акустич. устройствах, устройств микро-перемещений, реле и др. Для этого применяются магнитострикц. материалы с разл. параметрами.

Литература по магнитострикции

  1. Белов К. П., Упругие, тепловые и электрические явления в ферромагнетиках, [2 изд.], M., 1957;
  2. его же, Магнитострикционные явления и их технические приложения, M., 1987;
  3. Вонсовский С. В., Магнетизм, M., 1971.

К. П. Белов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution