к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Модули упругости

Модули упругости - величины, характеризующие упругие свойства материала. В случае малых деформаций упругого тела связь между компонентами напряжения s11, s22, ..., s31 и компонентами относит. деформации e11, e22, ... , e31 в нек-рой точке тела представляется шестью линейными соотношениями (см. Гука закон:)

3036-3.jpg

Коэф. g11, g12, ..., g66 наз. М. у. и имеют размерность напряжения, т. е. единицы силы, отнесённой к единице площади, поскольку eij - безразмерные величины. Физ. смысл M. у. выявляется при рассмотрении осн. элементарных типов напряжённого состояния упругого тела: одностороннего нормального напряжения, чистого сдвига и всестороннего нормального напряжения. Для каждого из этих напряжённых состояний зависимость между напряжением и соответствующей ему

деформацией определяется простейшей ф-лой: напряжение равно произведению соответствующей деформации на M. у. Одностороннему нормальному напряжению s, возникающему при простом растяжении (сжатии), соответствует в направлении растяжения модуль продольной упругости E (модуль Юнга). Он равен отношению нормального напряжения к относит. удлинению, вызванному этим напряжением в направлении его действия: E = s/e и характеризует способность материалов сопротивляться деформации растяжения.

Напряжённому состоянию чистого сдвига, при к-ром по двум взаимно ортогональным площадкам действуют только касат. напряжения т, соответствует модуль сдвига G. По величине он равен отношению касат. напряжения т к величине угла сдвига g, определяющего искажение прямого угла между плоскостями, по к-рым действуют касат. напряжения: G = т/g и представляет способность материала сопротивляться изменению формы при сохранении его объёма.

Всестороннему равному нормальному напряжению s, возникающему при гидростатич. давлении, соответствует модуль объёмного сжатия К (объёмный M. у.). Он равен отношению величины нормального напряжения к величине относит. объёмного сжатия, вызванного этим напряжением: К = s/q (где q = e11 + e22 + e33 - относит. изменение объёма) и характеризует способность материала сопротивляться изменению его объёма, не сопровождающемуся изменением формы.

К пост. величинам, характеризующим упругие свойства материала, относится коэф. Пуассона v. Величина его равна отношению абс. значения относит. поперечного сжатия сечения e' (при одностороннем растяжении) к относит. продольному удлинению e, то есть v = |e'|/e. Величины M. у. и коэф. Пуассона для нек-рых материалов приведены в табл. 1. Для однородного изотропного тела, напр. мелкозернистого ме-таллич. поликристалла с беспорядочной ориентировкой зёрен (т. е. не имеющего текстуры), Mодуль упругости и коэф. Пуассона одинаковы по всем направлениям. Величины E, G, К и v связаны соотношениями:

3036-4.jpg

Следовательно, только две из них являются независимыми величинами и упругие свойства в случае изотропного тела определяются двумя упругими постоянными.

Табл. 1.

3036-5.jpg

В случае анизотропного материала, напр. монокристаллов, E, G и v принимают разные значения в разл. кристаллографич. направлениях и их величины могут изменяться в широких пределах. Для монокристаллов M. у. для разных направлений иногда наз. постоянными упругости. Величины M. у. для нек-рых металлич. монокристаллов приведены в табл. 2.

3036-6.jpg

Примечание: E100- М. у. в направлении ребра куба элементарной кристаллич. ячейки, E111- M. у. в направлении пространств. диагонали куба.


Число модуля упругости анизотропного материала [коэф. gij в (*)] равно 36, однако можно показать, что gij = gji и число различных коэф. уменьшается до 21 у анизотропного тела, лишённого всякой симметрии в отношении упругих свойств. При наличии симметрии в материале число M. у. сокращается. Напр., упругие свойства кристаллов моноклинной системы определяют 13 M. у., ромбич. системы - 9; для изотропного же упругого тела число независимых упругих постоянных сводится к двум.

Mодули упругости устанавливаются экспериментально при ста-тич. или динамич. испытаниях. В первом случае образец подвергают воздействию усилий, вызывающих в нём определ. напряжённое состояние. Напр., E обычно определяют при испытаниях образцов на растяжение, G - на кручение и А - на всестороннее сжатие. Величины соответствующих M. у. устанавливают измерением приложенных усилий и возникающих при этом деформаций. При динамич. измерении M. у. пользуются зависимостью между частотой колебаний образца и величиной M. у. В случае продольных колебаний определяется E, в случае крутильных колебаний - G.

Mодули упругости не являются строго пост. величинами для одного и того же материала, их значения меняются в зависимости от хим. состава и (в меньшей степени) от предварительной термич. и механич. обработки материала. Границы изменения модулей упругости обычно указываются в справочниках. В пределах упругих деформаций величины модулей упругости не зависят от скорости деформации. С изменением температуры материала значения модулей упругости также меняются. Зависимость модулей упругости от температуры близка к линейной. В ср. уменьшением, у. при повышении температуры на 100° соответствует 2-4%.

Литература по модулям упругости

  1. Золоторевский В. С., Механические свойства металлов, 2 изд., M., 1983;
  2. Новик А., Бер-ри Б., Релаксационные явления в кристаллах, пер. с англ., M., 1975.

В. M. Розенберг

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 22.09.2020 - 04:08: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
22.09.2020 - 04:06: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
22.09.2020 - 04:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
22.09.2020 - 03:53: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
22.09.2020 - 03:52: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> КОМПЬЮТЕРНО-СЕТЕВАЯ БЕЗОПАСНОСТЬ ДЛЯ ВСЕХ - Карим_Хайдаров.
21.09.2020 - 10:36: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
21.09.2020 - 06:32: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Амары Ельской - Карим_Хайдаров.
21.09.2020 - 06:05: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
20.09.2020 - 06:03: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
19.09.2020 - 06:44: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
19.09.2020 - 06:24: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
19.09.2020 - 05:44: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution