к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Радиоактивность

Радиоактивность (от лат. radio - излучаю и activus - деятельный) - свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд Z, массовое число А) путём испускания элементарных частиц или ядерных фрагментов. Радиоакт. распад может происходить, если данное превращение энергетически выгодно, т. е. если разность Q между массой исходного ядра и суммарной массой продуктов распада положительна. Нек-рые из существующих в природе ядер радиоактивны, но большинство радиоакт. нуклидов получены искусственно в результате ядерных реакций. Искусств. Р. ядер определяет границы (по А и Z) существования в природе радионуклидов. Ядра, радиоактивные в осн. состоянии, распадаются и в возбуждённых состояниях. При достаточно больших энергиях возбуждения стабильные ядра также становятся радиоактивными. Ниже рассматриваются ядра, радиоактивные в осн. состоянии.

Радиоактивность


Явление Р. открыто в 1896 А. Беккерелем (A. Becque-rel), к-рый наблюдал спонтанное испускание солями U неизвестного излучения. Вскоре Э. Резерфорд (Е. Rutherford) и П. и М. Кюри (P. et M. Curie) установили, что при радиоакт. распаде испускаются ядра Не (a-частицы), электроны (b--частицы) и жёсткое эл--магн. излучение (g-лучи). В этот период исследователи Р. могли использовать лишь естеств. радионуклиды, содержащиеся в земных породах в достаточно большом кол-ве,- 232Th, 235U, 238U. С этих радионуклидов начинаются 3 радиоакт. семейства (радиоакт. ряда), заканчивающихся стабильными изотопами Рb (рис.). В дальнейшем был обнаружен ряд, начинающийся с 237Np, с конечным стабильным ядром 209Bi; 237Np обнаружен в урановых рудах в соотношении 237Np/238U = 1,8·10-1, впоследствии - в ядерных реакторах, где он образуется в результате реакции 238U(n, 2n) 237U4022-1.jpg237Np. Ядра - члены семейства находятся в равновесии между собой, поэтому наряду с долгоживущими родоначальниками существуют и все короткоживущие продукты их распада. Т. к. радионуклиды открывались как продукты распада U и Th, то им давались названия по месту в радиоакт. ряду, напр. UX14022-2.jpgUX2; RaD4022-3.jpgRaE.

Распад с вылетом позитронов (4022-4.jpg-распад) открыт в 1934 И. и Ф. Жолио-Кюри (I. et F. Joliot-Curie). В 1940 открыт новый тип Р.- спонтанное деление ядер (К. А. Петржак, Г. Н. Флёров). Делящееся ядро разваливается на два осколка сравнимой массы с одноврем. испусканием нейтронов и g-квантов (см. Деление ядер ).Протонная Р. ядер наблюдалась в 1982 С. Хофманом (S. Hofmann) с сотрудниками (см. Протонная радиоактивность).

В 1984 X. Роуз (Н. Rose) и Г. Джонс (G. Jones) открыли спонтанное испускание ядер 14С ядрами Ra. В течение последующих 3 лет был обнаружен спонтанный распад др. ядер с вылетом тяжёлых фрагментов (кластеров) - 24Ne и 28Mg (f -радиоактивность). Возможна также двухпротонная Р., теоретически предсказанная В. И. Гольданским (1960).

Число N радиоакт. ядер убывает со временем t по закону

4022-5.jpg

где N0 - число ядер в момент их образования, l - постоянная распада (вероятность распада в единицу времени). Если при распаде происходит конкуренция разл. типов (каналов) Р., то l равна сумме парциальных величин li. Относит. вероятность наблюдения разл. видов Р. определяется отношением 4022-6.jpg Время жизни нестабильного состояния ядра 4022-7.jpg Скорость радиоакт, распада характеризуют периодом полураспада 4022-8.jpg Полное время жизни радиоакт. ядра

связано с парциальными величинами тi соотношением 4022-9.jpg Времена жизни родоначальников радиоакт, рядов 4022-10.jpgлет.

Это немногие "выжившие" с момента образования Солнечной системы нестабильные нуклиды.

Бета-Р., при к-рой сохраняется массовое число А нуклида, но изменяется на 1 его заряд Z, представляет собой одно из проявлений бета-распада ядер, когда входящий в состав ядра протон p (нейтрон n) превращается в нейтрон (протон) с образованием позитрона b+(электрона b-) и нейтрино4022-11.jpg(антинейтрино4022-12.jpg). Аналогичную природу имеет изменение заряда ядра, связанное с захватом атомарных электронов (электронный захват ).Бета-распад связан со слабым взаимодействием нуклонов в ядре.

Остальные типы Р. связаны с сильным взаимодействием и электромагнитным взаимодействием нуклонов в ядрах. Радиоакт. распад, при к-ром испускаются протоны, a-частицы или тяжёлые кластеры типа 14С, характерен тем, что кинетич. энергия относит. движения вылетающей частицы и дочернего ядра принимает значения, близкие (или равные) к полной энергии распада Q. Поэтому дочернее ядро образуется в основном или слабовозбуждённом состоянии. Времена жизни т, соответствующие этим типам Р., экспоненциально возрастают при уменьшении кинетич. энергии продуктов распада. Распад имеет квантовомеханич. характер, он происходит благодаря туннельному проникновению сквозь потенц. барьер, образованный совокупным действием отталкивательного кулоновского и притягивающего ядерного взаимодействий вылетающей частицы и дочернего ядра (см. Альфа-распад).

Продукты распада формируются внутри и на поверхности родительского ядра, причём вероятность их формирования W зависит от структуры исходного и дочернего ядер. Она резко уменьшается при увеличении массы вылетающей частицы. Отношения вероятностей разл. каналов распада 4022-13.jpg зависящие от 4022-14.jpg и вероятностей формирования продуктов распада 4022-15.jpg, сильно варьируются. Напр., отношение вероятностей вылета ядра 14С или a-частицы порядка 10-10-10-11 для различных родительских изотопов Ra. Оно достигает ~10-13 для распада ядра 234U, когда вместо 14С испускается 28Mg.

Спонтанное деление также оказывается возможным благодаря туннельному проникновению через потенц. барьер. Однако в этом случае барьер связан с изменением формы ядра в процессе деления, что приводит к иным закономерностям, управляющим этим процессом.

Для объяснения f-распада рассматривают возбуждение ядра, затрагивающее только часть нуклонов вблизи его поверхности; это колебания формы ядра в осн. состоянии (нулевые колебания). В ядерных реакциях возбуждение таких колебаний приводит к появлению т. н. гигантских резонансов (см. Гигантские квантовые осцилляции ).Если в процессе таких колебаний ядро достигает грушевидной формы, то могут образоваться фрагмент и остаточное ядро, удерживаемое нек-рое время, как и при a-распаде. Время жизни ядра относительно f-распада определяется вероятностью W "распадной" конфигурации и прозрачностью барьера. Т. к. W убывает с ростом амплитуды колебаний, то для деформиров. ядер в осн. состоянии (см. Деформированные ядра)вероятность f-распада велика. Действительно, ядра Ra имеют квадрупольную деформацию (эллипсоид) и октуиольную (грушевидная форма), к-рые приближают осн. состояние к f-распаду. Проницаемость барьера определяется его высотой, массой фрагментов и гл. обр. энергией распада Qf. Действительно, в качестве остаточного конечного продукта при f-распаде практически всегда наблюдается ядро Рb с А = 208 (Z = 82, N = 126); f-распад с образованием такого дважды магического ядра характеризуется большой величиной Q f.

Получение радионуклидов в результате ядерных реакций приводит к необходимости измерять мин. время распада, определяемого как радиоактивный, чтобы разделить стадии возникновения радионуклида и последующего его распада. Это время (10-10-10-12 с) должно превышать время жизни возбуждённого составного ядра в ядерных реакциях.

За работы, связанные с открытием и исследованием Р., присуждено более 10 Ноб. пр. по физике и химии, в т. ч.: А. Беккерелю, П. и М. Кюри, Э. Ферми (Е. Fermi), Э. Резерфорду, И. и Ф. Жолио-Кюри, Д. Хевеши (G. Hevesy), О. Гану (О. Hahn), Э. Макмиллану (Е. McMillan) и Г. Сиборгу (G. Seaborg), У. Либби (W. Libby).

Литература по радиоактивности

  1. Кюри М., Радиоактивность, пер. с франц., 2 изд., М., I960; Альфа-, бета- и гамма-спектроскопия, под ред. К. Зиг-бана, пер. с англ., в. 1-4, М., 1969;
  2. Учение о радиоактивности. История и современность, М., 1973;
  3. Hоfmаnn S. и др., Proton radioactivity of 151Zu, "Z. Phys.", 1982, Bd A 305, S. 111;
  4. Rose H. J., Jоnes G. A., A new kind of natural radioactivity, "Nature", 1984, v. 307, p. 245;
  5. Кадменский С. Г., Фурман В. И., Альфа-распад и родственные ядерные реакции, М., 1985.

В. П. Чечев, В. И. Фурман

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution