к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Альфа-распад

Альфа-распад - испускание атомным ядром 111994-29.jpg-частицы (ядра 4Не). А--р. из основного (невозбуждённого) состояния ядра наз. также 111994-30.jpg-радиоактивностью [вскоре после открытия А. Беккерелем (A. Becquerel) радиоактивности 111994-31.jpg-лучами был назван наименее проникающий вид излучения, испускаемый радиоактивными веществами, в 1909 Э. Реаерфорд (Е. Rutherford) и Т. Ройдс (Т. Royds) доказали, что 111994-32.jpg-частицы являются дважды ионизованными атомами 4Не].

При А--р. массовое число А материнского ядра уменьшается на 4 единицы, а заряд (число протонов) Z - на 2:

111994-33.jpg (1)

Энергия, выделившаяся при А--р.,

111994-34.jpg (2)

где МА и МA-4 - массы материнского и дочернего ядер. 111994-35.jpg - масса 111994-36.jpg-частицы. Энергия 111994-37.jpg делится между 111994-38.jpg-частицей и дочерним ядром обратно пропорционально их массам, откуда энергия 111994-39.jpg-частиц

111994-40.jpg (3)

Энергетич. условие возможности А--р. заключается в том, чтобы энергия связи 111994-41.jpg 111994-42.jpg -частицы относительно материнского ядра была отрицательна. Эта энергия связи оказывается отрицательной почти для всех111994-43.jpg-стабильных ядер с А >150 (рис. 1), т. е. все ядра с А >150 должны быть a-радиоактивными. Однако во многих случаях время жизни этих ядер (период полураспада) слишком велико и 111994-51.jpg-радиоактивность не удаётся наблюдать.


111994-44.jpg

Рис. 1. Значения энергии связи 111994-45.jpg-частицы для 111994-46.jpg-стабильных ядер и области111994-47.jpg-радиоактивности; N - число нейтронов в ядре; стрелки показывают зоны, где наблюдается 111994-48.jpg-распад (в области Л от 2 до 50 111994-49.jpg-распад наблюдается, но точные значения 111994-50.jpgнеизвестны).

Известно св. 300 111994-52.jpg-активных ядер, большинство из к-рых получено искусственно. Подавляющее большинство последних сосредоточено в области транссвинцовых ядер с Z>82. Имеется группа 111994-53.jpg-активных ядер в области редкоземельных элементов (А =140-160), а также небольшая группа в промежутке между редкоземельными и тяжёлыми ядрами (рис. 1). В ядерных реакциях с тяжёлыми ионами синтезированы неск. a-излучающих нейтронно-дефицитных: ядер с А ~110. Наблюдаемые времена жизни a-активных ядер лежат в пределах от 1017 лет (204Рb) до 3*10-7 с (212Ро).

111994-55.jpg

Рис. 2. Схема распада 141Am, иллюстрируюшая характер информации, получаемой при изучении a-распада; I - угловые моменты состояний дочернего ядра, 237Np, 111994-56.jpg -их энергия, b - чётность состояний, % - доля переходов на данный уровень. L - угловой момент a-частицы.

Кинетич. энергии111994-54.jpg-частиц изменяются от 1,83 МэВ (144Nd) до 11,65 МэВ (изомер 212mРо). Пробег a-частицы с типичной энергией 111994-57.jpg=6 МэВ составляет ~5 см в воздухе при нормальных условиях и ~0,05 мм в Аl.

Альфа-спектроскопия. Спектр 111994-58.jpg-частиц, возникающих при расиаде материнского ядра, представляет ряд моноэнергетич. линий, соответствующих переходам на разл. уровни дочернего ядра. T. к. 111994-59.jpg-частица не имеет спина, правила отбора по моменту кол-ва движения I=L и чётности, к-рые вытекают из соответствующих законов сохранения, оказываются простыми. Угловой момент L 111994-60.jpg-частицы может принимать значения в интервале:

111994-61.jpg (4)

где 111994-62.jpg и111994-63.jpg- угловые моменты начального и конечного состояния ядер (материнского и дочернего). При этом разрешены только чётные значения L, если чётности обоих состояний совпадают, и нечётные, если чётности не совпадают. А--р. является важным методом изучения нижних энергетич. состояний тяжёлых ядер (рис. 2).

Для измерения энергии и интенсивности потока 111994-64.jpg-частиц, испускаемых 111994-65.jpg-активными ядрами, используются газоразрядные и полупроводниковые детекторы частиц, а также спектрометры. Поверхностно-барьерные кремниевые полупроводниковые детекторы позволяют получить разрешение до 12 кэВ (для 111994-66.jpg-частиц с 111994-67.jpg=6 МэВ) при светосиле ~0,1% . В табл.. 1 приведены энергии 111994-68.jpg-частиц нек-рых 111994-69.jpg-излучателей, используемых в качестве стандартов.

Периоды полураспада. Одна из особенностей 111994-70.jpg-радиоактивности состоит в том, что при сравнительно небольшом различия в энергии 111994-71.jpg-частиц 111994-72.jpg время жизни материнского ядра отличается на много порядков. Энергия 111994-73.jpg-распада Q и период полураспада111994-74.jpg ядер с одним и тем же Z связаны соотношением, эмпирически установленным задолго до создания теории А--р (Гейгера - Неттолла закон):

111994-75.jpg (5)

Здесь AZ и BZ - константы, приведённые в табл. 2; эфф. величина 111994-76.jpg МэВ учитывает экранирующий эффект электронов.

Соотношение (5) лучше всего описывает переходы между осн. состояниями четно-чётных ядер (рис. 3). Для нечётных ядер и переходов в возбуждённые состояния периоды полураспада оказываются во многих случаях в 100-1000 раз большими при одинаковой энергии А--р.

Табл. 2

Источник

Энергия, кэВ

226Ra

4781, 8b2. 4

210P0

5304. 5b0, 5

212Bi

6049, 6b0, 7

214P0

7688, 4b0, 6

212P0

8785, 0b0, 8

Z + 2 (атомный номер излучателя)

AZ

BZ

Z + 2 (атомный номер излучателя)

AZ

BZ

84

129,35

-49,9229

92

147,49

-53,65

86

137,46

- 52,4597

94

146,23

- 52,0899

88

139,17

-52,1476

96

152,44

-53,6825

90

144,19

- 53,2644

98

152,86

-52,9506

Отношение истинного периода полураспада к вычисленному по ф-ле (5) для четно-чётного ядра наз. фактором замедления.

Теория альфа-распада. Осн. фактором, определяющим вероятность А--р. и её зависимость от энергии а-частицы и заряда ядра, является кулоновский барьер. Простейшая теория А--р. [Г. Гамов (G. Gamow), 1927] сводилась к описанию движения а-частицы в по-

тенциальной яме с барьером (рис. 4, пунктир). Т. к. энергия 111994-77.jpg-частиц составляет 5-10 МэВ, а высота ку-лоновского барьера у тяжёлых ядер 25-30 МэВ, то вылет 111994-78.jpg-частицы из ядра может происходить только за счёт туннельного эффекта, а вероятность этого процесса определяется проницаемостью В барьера.

111994-79.jpg

Рис. 3. Зависимость периода полураспада T1/2 от энергии четночётных 111994-80.jpg-излучателей, + - переходы в основное состояние, 111994-81.jpg - в первое возбуждённое, 111994-82.jpg - в высшие возбуждённые состояния.

Используя упрощённую форму барьера и предполагая, что a-частица существует внутри ядра и при вылете не уносит углового момента, можно получить для вероятности А--р. выражение, экспоненциально зависящее от энергии 111994-83.jpg-частицы, т. е. типа (5).

Совр. подход к описанию А--р. опирается на методы, используемые в теории ядерных реакций. Ширина111994-84.jpg состояния ядра относительно А--р. связана с периодом полураспада соотношением

111994-85.jpg (6)

Для А--р. в канал С

111994-86.jpg (7)

где 111994-87.jpg - т. н. приведённая ширина, определяемая степенью перекрывания волновых функций начального и конечного состояния ядер, характеризующая

111994-88.jpg

Рис. 4. Сумма ядерного и нулоновекого потенциалов для 111994-89.jpg частицы в ядре 230Th; энергия 111994-90.jpg-распада 111994-91.jpg МэВ.

вероятность появления 111994-92.jpg-частицы на поверхности ядра (на радиусе канала RC), а PC (RC) - проницаемость эфф. барьера V, образуемого ядерным, кулоновским и центробежным потенциалами:

111994-93.jpg (8)

Здесь L-орбитальный момент вылетающей a-частицы, 111994-94.jpg -её приведённая масса, равная 111994-95.jpg , где

М-масса ядра, т-масса 111994-96.jpg-частицы. Существование центробежного барьера связано с наличием у111994-97.jpg-частицы отличного от нуля орбитального момента. Центробежный барьер в А--р. обычно играет сравнительно небольшую роль (табл. 3), в отличие от бета-распада ядер и 111994-98.jpg-переходов, вероятность к-рых сильно зависит от углового момента, уносимого частицей (см. Гамма-излучение).

Цель большинства исследований А--р.- измерение приведённых ширин и сравнение их с вычисленными на основе разл. теоретич. представлений о ядре. Абс. значения зависят от ряда параметров и особенно чувствительны к величине радиуса канала 111994-99.jpg.

Т а б л. 3 - Проницаемость ВL центробежного барьера относительно его проницаемости В0 при L=0 (Z=90, Q = 4,5 МэВ).

L

0

1

2

3

4

5

6

BL/B0

1

0,84

0,60

0,36

0, 18

0,078

0,028

Наиболее точные и надёжные результаты получаются, если возможен анализ отношения ширин для переходов на разные уровни одного и того же ядра 111994-100.jpg , т. к. в этом случае большинство неопределённостей сокращается. Отношения приведённых ширин111994-101.jpg соответствуют факторам замедления.

Из анализа ширин следует, что 111994-102.jpg-частицы не существуют в 111994-103.jpg-распадающемся ядре всё время, а с нек-рой конечной вероятностью возникают на его поверхности перед вылетом. Имеющиеся данные свидетельствуют также о том, что в поверхностном слое тяжёлых ядер, по-видимому, существуют 111994-104.jpg-частичные группировки нуклонов (a-кластеры).

Классификация 111994-105.jpg-переходов основывается на структурных факторах, связанных с вероятностью образования 111994-106.jpg-частицы. А--р. идёт на 2-4 порядка быстрее, когда 111994-107.jpg-частица образуется из нейтронных и протонных пар, по сравнению с распадом, когда111994-108.jpg-частица образуется из неспаренных нуклонов. В первом случав А--р. наз. благоприятным, и такими оказываются все 111994-109.jpg -переходы между основными состояниями четно-чётных ядер. Во втором случае А--р. наз. неблагоприятным.

Альфа-распад возбуждённых ядер изучается с помощью ядерных реакций. Отд. случаи распада нижних возбуждённых состояний тяжёлых ядер, приводящего к испусканию т. н. длиннопробежных 111994-110.jpg-частиц, известны давно и причисляются к явлению радиоактивности. Наблюдаемые времена жизни ядер лежат в диапазоне от 10-11 с (А--р. нейтронных резонансов, см. Нейтронная спектроскопия)до 10-22 с (А--р. уровней лёгких ядер). Нек-рые распадающиеся состояния лёгких ядер имеют приведённые ширины, близкие к максимально возможным (к т. н. вигнеровскому пределу), что указывает на их ярко выраженный 111994-111.jpg-кластерный характер. Изучение А--р. высоковозбуждённых состояний ядер - один из информативных методов исследования ядерной структуры при больших энергиях возбуждения.

Литература по альфа-распаду

  1. Альфа-, бета- и гамма-спектроскопия, пер. с англ., в. 2, М., 1969;
  2. Соловьев В. Г., Теория атомного ядра. Ядерные модели, М., 1981.

А. А. Оглоблин.

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution