к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Сверхпроводниковые приемники излучения

Сверхпроводниковые приемники излучения - приёмные устройства, основанные на изменении состояния сверхпроводника (или системы сверхпроводников) под действием излучения. Использование сверхпроводников, обладающих малым уровнем шума и сильно нелинейными свойствами, позволяет достигнуть высокой чувствительности С. п. и., приближающейся к теоретич. (квантовому) пределу. Наиб. распространение получили след. виды С. п. п.: сверхпроводниковые болометры ,приёмники на основе Джозефсона эффекта (туннелирование спаренных электронов) и приёмники на основе одночастичного туннелирования.

Чувствительным элементом (ЧЭ) сверхпроводникового болометра (СБ)является сверхпроводящая плёнка (СП), находящаяся при температуре, фиксированной на крутом участке кривой перехода плёнки из нормального в сверхпроводящее состояние (рис. 1). Незначит. нагрев плёнки (на ~10-4 К) потоком эл--магн. излучения вызывает заметное изменение её сопротивления и напряжения на ней (при фиксиров. токе), к-рое и регистрируется малошумящим усилителем. Чувствительность СБ пропорциональна крутизне кривой перехода и поэтому использование материалов с узкими сверхпроводящими переходами является предпочтительным. СП должна удовлетворять и другим, часто противоречивым требованиям: высокое уд. сопротивление в нормальном состоянии, малая толщина, слабая зависимость чувствительности от частоты излучения, малая теплоёмкость и др.
8021-21.jpg

Рис. 1. Температурная зависимость сопротивления плёнки R при переходе её ир нормального в сверхпроводящее состояние. RH - сопротивление плёнки в нормальном состоянии. Под действием излучения температура плёнки увеличивается на8021-22.jpg, её сопротивление на8021-23.jpg

Для достижения высокой чувствительности наиб. выгодным оказалось разделение функций поглощения излучения и реагирования на вызываемый им нагрев. Этот принцип реализован в т. н. составном болометре, простейшая схема к-рого представлена на рис. 2. В этом болометре ЧЭ (1)- СП из А1. Она нанесена на одну из сторон тонкой сапфировой подложки (2), с др. стороны подложки нанесена плёнка Bi (3), поглощающая излучение. Подложка подвешена на тонких нейлоновых нитях (4), к-рые крепятся к массивной медной рамке. (5) - «термостату» с большой постоянной времени (8021-25.jpg~ 10 с). Висмутовая плёнка имеет значит. сопротивление и высокий коэф. поглощения, величина к-рого практически не зависит от длины волны излучения. Находящаяся в хорошем тепловом контакте с ней плёнка А1 обладает узким сверхпроводящим переходом (8021-26.jpg К) и обеспечивает высокий коэф. преобразования. Включение СП в измерительную схему осуществляется при помощи тонких плёнок из индия, нанесённых на нейлоновые нити (4).
8021-24.jpg

Рис. 2. Схема основного узла составного сверхпроаодя-щего болометра: 1 - сверхпроводящая плёнка из А1; 2 - сапфировая подложка; 3 - плёнка из Bi; 4 - нейлоновые нити; 5 - медная рамка; 6 - висмутовый нагреватель подложки; 7 - контакты из In.

СБ работает в режиме прямого детектирования излучения, к-рое обычно модулируется с НЧ (~10 Гц). Пороговая чувствительность РПСБ, т. е. мощность, вызывающая изменение напряжения на плёнке, равное среднеквадратичному шумовому напряжению на ней (см. Шумы в радиоэлектронике), определяется шумом ЧЭ. На практике в высокочувствит. СБ осн. шум обусловлен термодинамич. флуктуациями температуры при переносе теплоты от ЧЭ к термостату. Этот шум обычно превосходит джонсоновский шум (белый шум)активного сопротивления плёнки, а также шум, вызываемый флуктуациями фонового излучения. В этом случае8021-27.jpg , где G - коэф. тепловой связи ЧЭ с термостатом. Постоянная времени СБ определяется соотношением8021-28.jpg , где С - теплоёмкость ЧЭ. С учётом этого8021-29.jpg и ухудшается при уменьшении т, а при фиксированном т она улучшается с уменьшением С.

Высокочувствительными считаются СБ с РП = 10-12- 10-14 Вт/Гц 1/2, обладающие довольно значит. инерционностью8021-30.jpg с. Чувствительность описанного выше составного болометра достигает РП = 3*10-15 Вт/Гц1/2 при частоте модуляции 2 Гц. Для увеличения быстродействия СБ (ведущего к соответствующей потере чувствительности) СП наносится на массивную подложку через теплоизолирующую прослойку, либо СП находится в тепловом контакте с жидким гелием, что обеспечивает быстрый отвод от неё теплоты. Постоянная времени таких СБ уменьшается до 10-5-10-10 с, а РП = 10-2-10-12 Вт/Гц1/2.

Действие приёмников излучения с джозефсоновскими переходами (ДП) основывается на видоизменении нелинейных вольт-амперных характеристик (ВАХ) этих переходов под действием эл--магн. излучения. На рис. 3 схематически представлена ВАХ ДП с непосредств. проводимостью (мостик, точечный контакт) как в отсутствие, так и при наличии внеш. излучения.
8021-31.jpg

Рис. 3. Вольт-амперная характеристика (ВАХ) джозефсоновского перехода с непосредственной проводимостью. Сплошная кривая - ВАХ без действия излучения, штриховая кривая - ВАХ при действии излучения, штрихпунктир - нагрузочная кривая. IС - критический ток,8021-32.jpg - изменение напряжения под действием излучения.

Воздействие излучения (с частотой f) сводится в осн. к понижению критич. тока IС и появлению вертикальных ступеней при напряжениях8021-33.jpg (n - целое число, соответствующее номеру ступени). Ступени на ВАХ обусловлены нелинейным взаимодействием в переходе колебаний тока - собственных (джозефсоповских) и наведённых внеш. излучением. В режиме квадратичного детектирования ДП включается в цепь с заданным током и при понижении IС происходит изменение напряжения на ДП DV, к-рое н регистрируется как отклик приёмника. Для малых амплитуд наведённого тока8021-34.jpg величина отклика8021-35.jpg В случае низких частот8021-36.jpg определяется кривизной ВАХ и не зависит от частоты. Этот случай тождествен случаю обычного классич. детектирования излучения нелинейным элементом. В области высоких частот величина отклика пропорциональна дифференц. сопротивлению Rd ДП и обратно пропорциональна f2. Для смещений вблизи ступеньки отклик резонансным образом зависит от /, т. е. является селективным. В основу конструкции квадратичных детекторов положена схема обычного модуляц. радиометра ,а в качестве ЧЭ чаще всего используется сверхпроводящий точечный контакт, смещение на к-ром задаётся в максимуме Rd. В области высоких частот (f ~ 100-200 ГГц) лучшие из полученных значений РП достигают 10-14-10-15 Вт/Гц1/2. Спектральная область чувствительности детекторов простирается до ~1000 ГГц, при этом, однако, РП ухудшается с ростом f.

В гетеродинных приёмниках излучения нелинейность ВАХ ДП используется для смещения поступающего сигнала с частотой f с сигналом внеш. гетеродина fГ и с дальнейшим усилением по промежуточной частоте8021-37.jpg . Общая схема приёмника аналогична обычным гетеродинным приёмникам с нелинейным смесительным элементом (см. Радиоприёмные устройства ).Наилучшая эффективность преобразования частот получается при задании смещения на ДП в точке максимума Rd (обычно между 0 и V1 - первой ступенькой). Чувствительность приёмника со смесителем зависит от величины шума, добавляемого при преобразовании частоты сигнала к fп, и обычно характеризуется соответствующей шумовой температурой TN. Сильная нелинейность ВАХ и наличие в ДП собств. генерации создают условия для преобразования «вниз» по частоте не только полезного сигнала, но п мн. ВЧ-компонентов шума. В результате, как показывают теория и эксперимент, TN смесителя на основе ДП в десятки раз превышает его физ. температуру. Частотная область использования смесителей с ДП составляет 30-500 ГГц. Для частот ~100 ГГц наименьшее достигнутое значение TNравняется8021-38.jpg100К. Как квадратичные детекторы, так и гетеродинные приёмники на основе ДП широко не применялись. Причина этого в недостаточной стабильности свойств обычно используемых в них сверхпроводящих точечных контактов и в повыш. уровне шума. Вместе с тем по своим возможностям они в ВЧ-области (100-1000 ГГц) превосходят, по-видимому, приёмники, основанные на Шоттки эффекте и одночастичных туннельных переходах (см. Туннельный эффект).
8021-41.jpg

Рис. 4. Вольт-амперная характеристика (ВАХ) туннельного перехода сверхпроводник - изолятор - сверхпроводник. Сплошная кривая - ВАХ без действия излучения, штриховая кривая - ВАХ при действии излучения с частотой f.

В туннельных переходах сверхпроводник - изолятор - сверхпроводник (СИС) при напряжении смещения8021-39.jpg , где8021-40.jpg - ширина энергетпч. щели сверхпроводника, начинается туннелирование отд. электронов, к-рому соответствует резкий рост тока через переход (рис. 4). Большая нелинейность ВАХ такого одночастичного туннелирования может быть использована для прямого детектирования эл--магн. излучения. Отклик приёмного элемента СИС в этом случае определяется как изменение тока через переход на единицу мощности падающего излучения. В случае низких частот отклик пропорционален крутизне ВАХ, а при частотах8021-42.jpg , где8021-43.jpg - ширина области роста тока вблизи энергетич. щели, предельное значение отклика соответствует квантовому пределу hf/e. Пороговая чувствительность РП такого детектора ограничивается шумом тока смещения. В квантовом пределе РП пропорциональна корню квадратному из числа фотонов, поглощённых за время, соответствующее обратной ширине полосы детектора, и вызывающих изменение тока в детекторе, равное ср. шумовому току. Достигнутое значение РП = 2,6*10-16 Вт/Гц1/2 для частоты 36 ГГц очень близко к квантовому пределу и является наилучшим для детекторов миллиметрового диапазона. В комбиниров. туннельном переходе сверхпроводник - изолятор - нормальный металл было осуществлено детектирование излучения с частотами до8021-44.jpg 600 ГГц, величина отклика при этом также была близка к квантовому пределу.

Резкая нелинейность ВАХ переходов СИС используется для создания смесителей миллиметрового диапазона. Первоначально СИС использовался только как нелинейное сопротивление по схеме обычного классич. смесителя. В этом режиме для туннельного перехода Pb(Bi) были получены малые потери преобразования (8021-45.jpg2 дБ), а шумовая темп-pa З8021-46.jpg 4 К (на частоте8021-47.jpg 36 ГГц). Позднее теоретически и экспериментально было показано, что в результате происходящего в СИС процесса туннелирования, сопровождаемого поглощением фотонов падающего излучения,8021-48.jpg , выходной импеданс может принимать очень большие значения и даже становиться отрицательным. Подобные эффекты наблюдаются при смещении, несколько меньшем8021-49.jpg, и в этом случае преобразование сигнала может осуществляться с большим усилением. Реализация больших усилений на практике приводит к неустойчивой работе приёмника. Поэтому наиб. выгодным оказался режим работы с таким усилением, при к-ром шумовая темп-pa усилителя промежуточной частоты, пересчитанная к смесителю, соответствует уровню шумовой температуры смесителя TN. В таком режиме на оловянном СИС с крутой ВАХ при усилении8021-50.jpg 4 дБ удалось достичь значений TN = 98021-51.jpg 6 К для частоты 36 ГГц. Смесители на основе СИС получили довольно широкое распространение и на практике применяются разл. варианты их конструкций. Частотная область их использования 30-300 ГГц. Значение TN близко к квантовому пределу hf/k и по этому параметру СИС-смесители превосходят и смесители на основе джозефсоновских переходов п на основе эффекта Шоттки. По своей чувствительности они достигли уровня мазеров ,будучи вместе с тем более высокочастотными и широкополосными, чем последние. Частотный диапазон СИС-смесителей со стороны высоких частот ограничивается шунтирующим действием собств. ёмкости перехода и возрастанием вклада дополнит. (джозефсоновского) шума с увеличением частоты. Для повышения рабочих частот перспективным является использование сверхпроводящих материалов с высокой критической температурой.

Высокая чувствительность описанных выше С. п. и., в ряде случаев близкая к квантовому пределу, делает целесообразным их применение прежде всего для регистрации чрезвычайно слабых потоков эл--магн. излучения - в спектроскопии, астрономии, биологии, медицине и во многих физ. измерениях.

Литература по сверхпроводниковым приемникам излучениям

  1. Надь Ф. Я., Приемники миллиметрового и субмиллиметрового излучения на основе джозефсоновских переходов, «ПТЭ», 1975, № 1, с. 7;
  2. Кошелец В. П., Овсянников Г. А., Криогенные СВЧ устройства, «Зарубежная радиоэлектроника», 1983, № 6, с. 31;
  3. Хребтов И. А., Сверхпроводниковые болометры, «ПТЭ», 1984, №4, с. 5;
  4. Tucker J. R., Feldman M. J., Quantum detection at millimeter wavelengths, «Rev. Mod. Phys.», 1985, v. 57, № 4, p. 1055.

Ф. Я. Надь

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution