к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Электрический импеданс

Электрический импеданс, комплексное сопротивление - (англ, impedance, от лат. impedio - препятствую) (комплексное сопротивление) - аналог электрич. сопротивления для гармонич. процессов. Различают импеданс элемента цепи перем. тока (импеданс двухполюсника) и импеданс каких-либо поверхности в монохроматич. эл--магн. поле (полевой импеданс, поверхностный импеданс).

Понятие импеданса было введено в электродинамику О. Хевисайдом (О. Heaviside) и О. Лоджем (О. Lodge), понятие полевого импеданса - С. Щелкуновым (S. Schelkunoff, 1938). Импедансные характеристики используют не только в электродинамике, их вводят для описания линий передачи волновых возмущений любой природы (см., напр., Импеданс акустический).
Импеданс двухполюсника. В теории электрич. цепей любую часть цепи, состоящую из пассивных линейных элементов (таких, как сопротивления r, индуктивности L, ёмкости С, трансформаторы) и имеющую две точки (полюса) подключения к остальной цепи (рис. 1), в случае квазистационарных гармонич. процессов с зависимостью от временя ~exp(iwt) можно рассматривать как пассивный двухполюсник, все внеш. свойства к-рого описываются одной комплексной величиной Z, наз. импеданса двухполюсника и равной

Z (w) = V/I =R (w) + iX(w).
1-8.jpg
Рис. 1. Электрическая цепь, включающая пассивные линейные элементы и имеющая два полюса: a - схема цепи; б - эквивалентный двухполюсник с импедансом Z(w).

Здесь V - комплексная амплитуда напряжения между полюсами 1 и 2, I - комплексная амплитуда тока в направлении от полюса 1 к полюсу 2; R - веществ. часть импеданса (активное сопротивление), X - мнимая часть импеданса (реактивное сопротивление, реактанс). Модуль импеданса |Z|=(R2+X2)1/2 наз. полным сопротивлением двухполюсника. В СИ импеданс измеряется в Омах, в Гаусса системе единиц имеет размерность, обратную скорости. Иногда наряду с импедансом Z используют обратную ему величину s=Z-1, наз. адмитансом. Активное сопротивление R ответственно за потери энергии, поступающей в двухполюсник. Мощность потерь Р (средняя за период колебаний Т=2p/w)выражается соотношением Р =R|I|2/2. Реактанс характеризует величину энергии, пульсирующей с частотой 2w (и потому в среднем за период равной нулю), накапливаемой в двухполюснике и отдаваемой обратно источнику. Знак реактанса определяется зависимостью от времени: в технике и прикладной физике (и в данной статье) полагают её 1-9.jpg в теоретич. физике обычно принимают 1-10.jpg В случае чисто индуктивного двухполюсника (индуктивное сопротивление) Х=ХL=wL (в СИ; в системе единиц Гаусса XL=c-2wL), а для чисто ёмкостного (ёмкостное сопротивление) Х=Хс=-(wС)-1. Различие в знаках порождается дуальной асимметрией Максвелла уравнений (Е''H, Н''- E)и отражает соотношение между фазами напряжений и токов: ток в идеальной катушке самоиндукции отстаёт по фазе на p/2 от приложенного напряжения, а ток через идеальный конденсатор опережает па тот же угол напряжение, создаваемое на его обкладках. Правила сложения импеданса при последоват. и параллельном их соединении такие же, как и в случае обычных омических сопротивлений: при последоват. соединении двухполюсников складываются импедансы Z, а при параллельном - адмитансы Z-l. Напр., для двухполюсника, изображённого на рис. la, имеем:

Z-1 = (r+ iwL)-1+iwC.

Матрица импеданса. Разветвлённую электрич. цепь, имеющую более двух точек подключения, наз. многополюсником [если число пар точек подключения (входов) равно N, то цепь наз. 2N-полюсником]. На входах многополюсника должны быть заданы направления отсчёта напряжений и токов (рис. 2). Если многополюсник включает в себя только линейные, пассивные и взаимные элементы, то для квазистационарных гармонич. процессов все его внеш. свойства описываются матрицей импеданса ||Zab||, связывающей комплексные амплитуды напряжений и токов на входах при произвольном подключении к когерентным источникам:
1-11.jpg
Напр., для четырёхполюсника, изображённого на рис. 3, а, элементы матрицы импеданса равны: Z11=Z1+Z3, Z22=Z2+Z3, Z12=Z21=Z3. В силу взаимности принципа матрица ||Zab|| симметрична, т. е. Zab=Zba
Входной импеданс. Свойства многополюсников можно описать и с помощью т. н. входных импедансов отд. входов.
1-12.jpg
Рис. 2. Многополюсник, все внешние свойства которого задаются матрицей импеданса ||Z||.

1-13.jpg
Рис. 3. Четырёхполюсник: a - эквивалентная схема; б - схема для определения входного импеданса.

При этом по отношению к выбранному входу многополюсник рассматривают как двухполюсник, а все остальные входы считают нагруженными произвольными импедансами Zнb. Поэтому входные импедансы являются функциями не только частоты, но и нагрузочных импедансов. Так, для четырёхполюсника, приведённого на рис. 3:
1-14.jpg
Для согласования произвольной нагрузки Zн с источником, имеющим внутренний импеданс Zвн, используют недиссипативные четырёхполюсники (без поглощающих элементов), добиваясь выполнения условия Zвх(Zн)=Z*вн (* означает комплексное сопряжение). При этом достигается макс. передача энергии от источника к нагрузке (кпд равен 50%, остальная энергия поглощается внутри источника). Если требуется обеспечить высокий кпд передачи, выбирают такой согласующий четырёхполюсник, чтобы выполнялись условия: Rвх(Zн)дRвн, Xвх(Zн)=-Хвн.
Волновой импеданс. Входной импеданс четырёхполюсника, удовлетворяющий условию Zвх(Zн=Zв)=Zн= Zв, наз. волновым импедансом, ибо в бесконечной цепочке, составленной из одинаковых четырёхполюсников, будут без отражений распространяться волны (в общем случае экспоненциально затухающие) с пост. значением отношения напряжения к току. В пределе непрерывной однородной линии передачи это отношение в любой нормальном сечении постоянно и при отсутствии потерь равно Zв = (Lп/Cп)1/2, где Lп, Сп - погонные (на единицу длины) индуктивность и ёмкость лииии. Для линии конечной длины, нагруженной на ZнZв, коэф. отражения (отношение комплексных амплитуд отражённой и падающей волн) равен

Г=(Zн-Zв)/(Zн+Zв). (1)

При Zн=0 и Zн'':, что соответствует короткозамкнутой и разомкнутой линиям, имеет место полное отражение (Г=71). Длинные линии не являются квазистационарными системами, поэтому понятие напряжения является условным. Обычно его относят только к точкам, лежащим в одном нормальном сечении линии Sn, а путь интегрирования g12 выбирают лежащим в этом же сечении
1-15.jpg
Поверхностный (полевой) импеданс 1-16.jpg вводят для монохроматич. эл--магн. полей Е(r)exp(iwt), H(r)exp(iwt) на любой условной поверхности S след. образом:
1-17.jpg
где Et, Нt - тангенц. составляющие напряжённостей электрич. и магн. поля, п - единичная нормаль к S, её направление выбирают обычно так, чтобы проекция на неё среднего по времени потока энергии (вектора Пойнтинга П=(с/8p)Rе [ЕН*] была положительна. Входящий в (2) импеданс 1-18.jpgв общем случае является тензором, компоненты к-рого зависят от поляризации поля. В тех случаях, когда Еt и Нt взаимно перпендикулярны, вводят скалярный полевой импеданс Z. В гауссовых единицах полевой импеданс безразмерен, а в СИ имеет размерность сопротивления. Иногда для импеданса в системе единиц Гаусса используют выражение 1-19.jpg при этом1-20.jpg имеет размерность сопротивления. Эл--магн. волны разных типов (моды) характеризуются разл. полевыми импедансами, задаваемыми на волновых фронтах. Так, для поперечной плоской волны (типа ТЕМ), распространяющейся в направлении п в изотропной среде или в волноводе,1-21.jpg (m, e - относительные магн. и диэлектрич. проницаемости среды, e0, m0 - проницаемости вакуума, в системе единиц Гаусса e0=m0=1). В вакууме1-22.jpg Ом, эта размерная константа наз. характеристич. импедансом вакуума (в системе единиц Гаусса 1-23.jpg). Для волн типа ТМ и ТЕ соответствующие импедансы таковы:
1-24.jpg
где k - волновое число, k|| - продольная компонента волнового вектора. Для критич. частот (k||''0) ZTM''0, ZTE'':, a для закритических, когда волна превращается в экспоненциально убывающую моду:
1-25.jpg
т. е. в первом случае речь идёт о преимуществ. запасе электрич. энергии (ёмкостный импеданс), во втором - магнитной (индуктивный импеданс). При отсутствии потерь полевой импеданс для распространяющихся волн - величина действительная; иногда её наз. волновым сопротивлением среды, поскольку она обладает мн. свойствами волнового сопротивления линии или цепочки четырёхполюсников. В частности, при падении плоской волны из среды 1 на плоскую границу раздела со средой 2 коэф. отражения (по амплитудам полей) аналогично (1) выражается в виде
1-26.jpg
Это выражение представляет собой Френеля формулы, записанные через импеданс (р-поляризации соответствует мода ТМ, s-поляризации - мода ТЕ, (k||/k)(1,2)=cosq(l,2), q(l) и q(2) - углы падения и преломления). При исследовании отражения от плоскослоистых неоднородных сред часто ур-ния для полей преобразуют в ур-ния для полевых импедансов, при этом порядок ур-ний понижается. Существенны т. н. импедансные поверхности, т. е. поверхности с заданным, фиксированным на них значением полевого импеданса Фактически фиксация осуществляется (в большинстве случаев приближённо), когда структура поля "под поверхностью" неизменна и определяется к--л. свойствами среды или формирующих поле устройств. Так, при падении волны на хорошо поглощающую среду волна уходит в глубь среды почти по нормали, независимо от угла падения, следовательно, "входной" импеданс можно считать фиксированным и равным Z(2)TEM (Леонтовича граничное условие). С помощью импедансных поверхностей моделируют границы направляющих устройств в антеннах, замедляющих системах и т. д.

Литература по электическим импедансам

  1. Основы теории цепей, 4 изд., М., 1975;
  2. Будурис Ж., Шеневье П., Цепи сверхвысоких частот, пер. с франц., М., 1979.
к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что в 1974 - 1980 годах профессор Стефан Маринов из г. Грац, Австрия, проделал серию экспериментов, в которых показал, что Земля движется по отношению к некоторой космической системе отсчета со скоростью 360±30 км/с, которая явно имеет какой-то абсолютный статус. Естественно, ему не давали нигде выступать и он вынужден был начать выпуск своего научного журнала "Deutsche Physik", где объяснял открытое им явление. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution