к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Джозефсона эффект

Джозефсона эффект - протекание сверхпроводящего тока через тонкую изолирующую или несверхпроводящую прослойку между двумя сверхпроводниками (т. н. джозефсоновский контакт). Эффект был теоретически предсказан Б. Джозефсоном (В. Josephson, 1962) [1]. Д. э. обнаруживается при изучении вольт-амперной характеристики (BAX) джозефсоновских контактов (ДК). При пропускании через ДК достаточно слабого тока напряжение на контакте отсутствует, т. е. ток является чисто сверхпроводящим (джозефсоновский ток). Его существование связано с неполным разрушением куперовских пар электронов (см. Купера эффект) при их прохождении через очень тонкую несверхпроводящую прослойку. Такой режим называется стационарным Д. э. (экспериментально обнаружен в 1963 [2]). При увеличении тока через контакт и достижении им нек-рой величины IC на контакте возникает напряжение. Значение критич. джозеф-соновского тока IС зависит от свойств контакта, температуры и магн. поля. Ток IС складывается из тока сверхпроводящих (спаренных) электронов, к-рый теперь становится переменным (его частота зависит от напряжения на контакте), и тока, обусловленного прохождением через прослойку нормальных (несверхпроводящих) электронов. Режим при токе IС наз. нестационарным Д. э.

Согласно теории сверхпроводимости, сверхпроводящие (спаренные) электроны характеризуются единой волновой функцией, фаза к-рой плавно меняется вдоль сверхпроводника при протекании по нему тока (фазовая когерентность сверхпроводящих электронов). При прохождении сверхпроводящих электронов через несверхпроводящую прослойку фазовая когерентность частично (в меру отношения толщины прослойки к т. н. длине когерентности) разрушается и протекание джозефсоновского тока через прослойку сопровождается скачком фазы волновой функции сверхпроводящих электронов на этой прослойке 1119931-71.jpg - фазы волновой функции в сверхпроводниках по обe стороны от прослойки. При этом ток через контакт равен

1119931-72.jpg

Из ф-лы (1) видно,что джозефсоновский ток не может превышать IС.

Величина IС и механизм прохождения электронов через прослойку зависят от типа прослойки. Одним из типичных примеров ДК является туннельный контакт, состоящий из двух одинаковых или разл. сверхпроводников (обычно в виде тонких плёнок), разделённых очень тонким слоем диэлектрика, напр. слоем окисла материала одного из сверхпроводящих электродов. Протекание тока через прослойку в этом случае обусловлено квантовым туннелированием электронов (см. Туннельный эффект) через непроводящий барьер. Для получения измеримого джозефсоновского тока толщина изолирующей прослойки должна быть ок. 10-20 А. На рис. для примера изображена типичная BAX для туннельного контакта из одинаковых сверхпроводников. Стрелками показано направление изменения тока. Если увеличивать ток, то происходит описанный выше переход из стационарного в нестационарный режим Д. э. При уменьшении тока нестационарный Д. э. может сохраниться до значений тока, меньших критического (т. е. туннельный контакт проявляет гистерезис).


1119931-73.jpg

Вольт-амперная характеристика (BAX) туннельного контакта Sn- Sn при температуре 1,4 К (прослойка - плёнка оксида олова).

При нестационарном Д. э. разность фаз на контакте зависит от времени:

1119931-74.jpg

где V - напряжение на контакте, е - заряд электрона. Ур-ние (2) является следствием Шрёдингера уравнения для волновой функции пары сверхпроводящих электронов при наличии постоянной потенц. энергии 2eV и не связано с наличием прослойки, а имеет общий характер. Частота w сверхпроводящего тока через контакт определяется соотношением:

1119931-75.jpg

Соотношения (2) и (3) называются соотношениями Джозефсона.

Нестационарный Д. э можно рассматривать также как прохождение сверхпроводящих электронов через прослойку, сопровождающееся изменением их энергии на величину 2eV в расчёте на каждую куперовскую пару. При этом процессе испускаются кванты эл.- магн. излучения с частотой 1119931-76.jpg , связанной с изменением энергии соотношением (3). T. о., при нестационарном Д. э. контакт, находящийся при пост. напряжении, генерирует перем. сверхпроводящий ток. Имеет место и обратный процесс: при облучении джозефсоновского контакта СВЧ-излучением с частотой 1119931-77.jpg, удовлетворяющей условию

1119931-78.jpg

(п - целое число), прохождение сверхпроводящих электронов через контакт происходит с поглощением п фотонов внеш. поля, что приводит к появлению дополнит. тока через контакт, т. е. к возникновению на BAX участков с нулевым дифференциальным сопротивлением. Наблюдение таких участков и явилось первым косвенным обнаружением нестационарного Д. э. в 1963 [3]. Прямое наблюдение генерации СВЧ-излучения джозефсоновским контактом, находящимся под пост. напряжением, было осуществлено в 1965 [4].

Кроме туннельных структур джозефсоновские контакты могут представлять собой т. н. слабосвязанные сверхпроводники, т. е. два сверхпроводника, соединённых узким и коротким сверхпроводящим или нормальным "мостиком", тонкой прослойкой нормального металла либо с помощью точечного контакта. Аналог нестационарного Д. э. наблюдается также в очень узких однородных сверхпроводящих проволочках, где джозефсоновская генерация возникает при пропускании достаточно большого тока. Совокупность явлений, связанных с Д. э. в разл. системах, носит назв. слабой сверхпроводимости [5,6,7].

Д. э. подтверждает осн. концепцию совр. теории сверхпроводимости - наличие единой волновой функции и фазовой когерентности спаренных электронов в сверхпроводящем состоянии. По своей доступности эксперим. исследованию Д. э. представляет собой одну из уникальных возможностей изучать проявления квантовых свойств микромира в макроскопич. масштабе.

Д. э. используют в целом ряде криогенных приборов. Соотношение (1) является основой практич. использования стационарного Д. э. в т. н. сверхпроводящих квантовых интерферометрах (сквидах). ДК могут применяться в качестве генераторов и -детекторов СВЧ-диапазона. Свойство ДК переключаться с нулевого на конечное напряжение при превышении током критич. значения в совокупности с малой ёмкостью позволяет использовать их в качестве быстродействующих логич. элементов ЭВМ [7, 8]. Соотношение (4) может использоваться для уточнения фундаментальных физических констант и создания стандартов напряжения. На основе Д. э. совр. методами измерено отношение 1119931-79.jpg =4,83594000*1014 Гц/В с погрешностью 2*10-8, что позволяет создать стандарт вольта с погрешностью ~10-9.

Литература по Джозефсона эффекту

  1. Josephson B. D., Possible new effects in superconductive tunneling, "Phys. Lett.", 1962, v. 1, p. 251;
  2. Anderson P. W., Rоwell J. M., Probable observation of the Josephson superconducting tunneling effect, "Phys. Rev. Lett.", 1963, v. 10, p. 230;
  3. Shapirо S., Josephson currents in superconducting tunneling: the effect of microwaves and other observations, там же, 1963, v. 11,p. 80;
  4. Янсон И.К., Свистунов В. М., Дмитренко И. M., Экспериментальное наблюдение туннельного аффекта для куперовских пар с излучением фотонов, "ЖЭТФ", 1965, т. 48, с. 976;
  5. Кулик И. О., Янсон И. К, Эффект Джозефсона в сверхпроводящих туннельных структурах, M., 1970,
  6. Бароне А., Патерно Д., Эффект Джозефсона: физика и применения, пер. с англ., M , 1984;
  7. Лихарев К. К., Введение в динамику джозефсоновских переходов, M., 1985.

H. Б. Копнин

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что электромагнитное и другие поля есть различные типы колебаний, деформаций и вариаций давления в эфире.

Понятие же "физического вакуума" в релятивистской квантовой теории поля подразумевает, что во-первых, он не имеет физической природы, в нем лишь виртуальные частицы у которых нет физической системы отсчета, это "фантомы", во-вторых, "физический вакуум" - это наинизшее состояние поля, "нуль-точка", что противоречит реальным фактам, так как, на самом деле, вся энергия материи содержится в эфире и нет иной энергии и иного носителя полей и вещества кроме самого эфира.

В отличие от лукавого понятия "физический вакуум", как бы совместимого с релятивизмом, понятие "эфир" подразумевает наличие базового уровня всей физической материи, имеющего как собственную систему отсчета (обнаруживаемую экспериментально, например, через фоновое космичекое излучение, - тепловое излучение самого эфира), так и являющимся носителем 100% энергии вселенной, а не "нуль-точкой" или "остаточными", "нулевыми колебаниями пространства". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution