к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Проводимость плазмы

Проводимость плазмы - способность плазмы пропускать электрич. ток под действием электрич. поля и сторонних сил (индукц. электрич. поля, градиента давления и др.); физ. величина s, количественно характеризующая это явление. Электрич. ток в плазме представляет собой упорядоченное движение электронной и ионной компонент и определяется величиной зарядов, плотностью частиц, их массой и скоростью движения, а также частотами их столкновений:

4014-6.jpg

Здесь j - плотность тока,4014-7.jpg- заряд, плотность и ср. скорость ионов сорта 4014-8.jpg- плотность и ср. скорость электронов.

В классич. конденсиров. средах (металлах, электролитах) плотность тока j с большой степенью точности линейно зависит от напряжённости электрич. поля и наводимой эдс (Ома закон:)

4014-9.jpg

где 4014-10.jpg- скорость среды, 4014-11.jpg- уд. проводимость среды, зависящая от температуры.

Простота закона (2) объясняется малой длиной свободного пробега носителей тока. Благодаря этому их движение близко к хаотическому тепловому движению частиц, на к-рое накладывается слабый дрейф вдоль силовых линий электрич. поля 4014-12.jpg0.

В плазме пробеги частиц могут быть самыми разнообразными. При давлении порядка атмосферного в низкотемпературной плазме длина свободного пробега невелика (4014-13.jpg см), хотя она и больше пробега в конденсиров. средах. В высокотемпературной плазме длины свободных пробегов частиц очень велики. Так, напр., в токамаках длина свободного пробега4014-14.jpgсм при 4014-15.jpg и 4014-16.jpg10 кэВ. В этих условиях траектории заряж. частиц определяются преим. не столкновениями, а полями, существующими в плазме, и имеют очень сложный вид, а связь j c E* теряет локальный характер (см. Переноса процессы ).Такое отличие длины свободного пробега, а следовательно и свойств проводимости высокотемпературной плазмы от низкотемпературной, объясняется тем, что сечение "кулонов-ского" столкновения заряж. частиц быстро падает (а длина свободного пробега растёт) с ростом относит. энергии4014-17.jpgсталкивающихся частиц:

4014-18.jpg

Если измерять4014-19.jpgв эВ, то 4014-20.jpg Следовательно, при4014-21.jpg1 эВ значение4014-22.jpg существенно больше газокинетического4014-23.jpg, но уже при304014-24.jpg эВ оно равно4014-25.jpg

Др. важное отличие плазменных "проводников" от конденсированных заключается в том, что большинство плазменных образований существуют при условии, что через них протекает ток. Таковы классич. электрические разряды в газах, плазма в плазменных ускорителях, тока-маках и др. При изменении тока плазменная структура (конфигурация) плавно или скачкообразно изменяется, в ней могут в широком диапазоне частот развиваться колебания (от акустических до ленгмюровских), на электродах возникать "привязки" и т. п. Около электродов, помещённых в плазму, обычно возникают при-электродные слои, падение потенциала на к-рых может существенно превосходить падение потенциала в осн. части плазменного объёма (напр., в тлеющем разряде). По этой причине для большинства плазменных систем особое значение имеют не дифференциальные, типа (1), а интегральные характеристики П. п. Для стационарных систем это, в первую очередь, вольт-амперные характеристики:

4014-26.jpg

к-рые связывают приложенное напряжение4014-27.jpgс протекающим через плазменную конфигурацию током4014-28.jpg В нестационарных условиях их эквивалентами являются "осциллограммы" тока и напряжения:

4014-29.jpg

Исключая из этих выражений f, получим для существенно нестационарных разрядов неоднозначные зависимости4014-30.jpg

Если длина свободного пробега частиц достаточно мала, то динамику их поведения в плазме можно описать в гидродинамич. приближении (см. Двухжидкост-ная гидродинамика плазмы).

В этом случае для частиц каждого сорта записывается ур-ние движения, учитывающее и давление, и трение компонент друг о друга. Система этих ур-ний предельно упрощена, но тем не менее даёт правильное качественное, а во мн, случаях и количественное описание процессов.

Если время свободного пробега электронов4014-31.jpg0, то усреднённая скорость электронной компоненты оказывается соизмеримой со скоростями тяжёлых компонент, и поэтому, учитывая малую массу электронов, во мн. случаях течение электронной компоненты можно считать безынерционным, а саму её - находящейся в квазистатич. состоянии. В результате ур-ние движения для электронов принимает вид обобщённого закона Ома:

4014-32.jpg

Переход от (6) к (2) сводится к замене 4014-33.jpg и пренебрежению 4014-34.jpg где L - характерный масштаб неоднородности плазменного образования. Такой переход означает игнорирование Холла эффекта и термоэлектрич. явлений, и это допустимо для конденсиров. сред, где эти эффекты выражены сравнительно слабо. Однако в плазме они могут стать определяющими. Так, напр., в термоядерных системах 4014-35.jpg 10 кэВ, следовательно, термич. разность потенциалов может достигать десятков кВ. В то же время омический член 4014-36.jpg может быть очень малым. Так, напр., в токамаке при ср. плотности тока в шнуре

4014-37.jpg и 4014-38.jpg10 кэВ П. п.4014-39.jpg

Отсюда 4014-40.jpg В/см. В этих условиях большую роль в плазме начинает играть эффект Холла, т. е. в (6) входит не4014-41.jpgкак в (2), а4014-42.jpg Тогда получим

4014-43.jpg

где

4014-44.jpg

Второй член в правой части (7) обычно наз. холлов-ским. В этом случае различают П. п. по полю и поперёк магн. поля (см. Ома обобщённый закон). Классич. проводимость4014-45.jpg поперёк магн. поля с ростом H убывает 4014-46.jpg, а "холловская" проводимость, обязанная дрейфу электронов в скрещенных E-H-полях, убывает медленнее:4014-47.jpg. Проводимость вдоль магн. поля от H не зависит. При расчёте тока в плазме по ф-лам (7) и (8) надо знать скорость ионных компонент 4014-48.jpg В этом случае токи в плазме определяются не просто проводимостью и разностью потенциалов, приложенной к плазменному промежутку, а являются результатом коллективного взаимодействия всей самоорганизующейся плазменной конфигурации. Если конфигурация осесимметрична, а магн. поле имеет только одну азимутальную компоненту 4014-49.jpg то такая конфигурация имеет вид неограниченного цилиндра. Это означает, что если имеется гофриров. проводник, то при4014-50.jpgлинии электрич. тока перестают заходить в выступы (рис. 1).


Рис. 1. Линии тока в гофрированном проводнике: 1 - токовая поверхность, внутри которой 4014-51.jpg0,9 4014-52.jpg при

4014-53.jpg = 5; 2 - то же при 4014-54.jpg = 25.

4014-55.jpg


Величина П. п. 4014-56.jpg введённая феноменологически в гидродинамич. рассмотрении, может быть вычислена более строго [1], с использованием кинетических уравнений для плазмы, тогда для проводимости ионно-элект-ронной плазмы получим ряд ф-л:

4014-57.jpg

4014-58.jpg

4014-59.jpg

Здесь 4014-60.jpg- заряд иона, 4014-61.jpg- кулоновский логарифм.

В случае полностью ионизованной плазмы проводимость зависит только от температуры, возрастая пропорционально 4014-62.jpg и не зависит от концентрации плазмы. Это объясняется тем, что время свободного пробега

4014-63.jpg

поскольку

4014-64.jpg

Иначе ведёт себя коэф. электропроводности в случае слабоионизов. плазмы, у к-рой частота столкновений электронов с нейтралами больше, чем с ионами. Его можно определить, зная4014-65.jpgи4014-66.jpgпо ф-ле

4014-67.jpg

Если плазма достаточно плотная и близка к равновесной, то оценку концентрации электронов можно получить с помощью Саха формулы.

Однако это лишь оценочные расчёты, они могут заметно расходиться с экспериментами из-за загрязнения плазмы. Наличие примесей может существенно увеличивать концентрацию электронов. Учитывая, что при малых энергиях частиц 4014-68.jpg кулоновское сечение (3) существенно больше (в 4014-69.jpg раз) газокинетического, газ со степенью ионизации4014-70.jpg может уже рассматриваться как сильноионизованный, а его проводимость определяется по ф-ле (9а).

При достаточно редких столкновениях анализ П. п. требует учёта инерции электронов и кинетич. эффектов, таких, как убегание электронов Будкера - Дрей-сера (см. Убегающие электроны), пристеночная проводимость, аномальное сопротивление, а также проводимость за счёт неоклассич. переноса (см. Переноса процессы).

Благодаря различию скоростей ионной и электронной компонент, приводящему к эффекту Холла, траектории ионов и электронов в плазменных объёмах могут иметь совершенно разный вид (рис. 2). Так, напр., в осесимметричных плазменных ускорителях с замкнутым дрейфом ионы идут вдоль канала в направлении приложенной разности потенциалов, тогда как электроны преим. движутся (дрейфуют) по замкнутым траекториям вдоль азимута, в направлении, перпендикулярном E и Н.

Рис. 2. Схематическое изображение траектории ионов и электронов в плазменном объёме при "сильном" эффекте Холла; сплошные линии - ионы, штриховые - - электроны.

4014-71.jpg

Существ. различие ионных и электронных траекторий приводит к тому, что сопряжение плазменных систем с электродами представляет собой весьма непростую проблему и часто требует сложных многоэлектродных систем, примером к-рых могут служить секцио-ниров. электроды МГД-генераторов. Чтобы уменьшить возникающие здесь трудности, часто стремятся траектории той или иной группы частиц (обычно электронов) сделать замкнутыми.

Литература по проводимости плазмы

  1. Брагинский С. И., Явления переноса в плазме, в сб.: Вопросы теории плазмы, в. 1, М., 1963, с. 183;
  2. Райзер Ю. П., Основы современной физики газоразрядных процессов, М., 1980.

А. И. Морозов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution