к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Криостат

Криостат (от греч. kryos - холод, мороз и statos - стоящий, неподвижный) - прибор для проведения низкотемпературных фиа. исследований или тер-мостатирования разл. объектов при низких (90-0,ЗК) и сверхнизких (T<0,3 К) темп-pax. К. различаются как по физ. процессу, приводящему к охлаждению либо к поддержанию заданной температуры, так и по используемому хладагенту.

Криостат откачки паров криожидкостей. Для получения и поддержания низких температур обычно применяют сжиженные газы, помещаемые в сосуды Дьюара. Откачивая пары этих газов, удаётся перекрыть следующие интервалы температур: 90-55 К (кислород); 78-63 К (азот); 27-24,5 К (неон); 20,4-14 К (водород); 4,2- 1,0 К (4Не). Для получения температур Т<1 К (до 0,3 К) используют 3Не, к-рый имеет более низкую, чем 4Не, температуру кипения и не образует сверхтекучих плёнок на стенках откачиваемых камер (см. Гелий жидкий). Для теплоизоляции К., заливаемого жидкими кислородом и азотом, обычно достаточной оказывается высоковакуумная изоляция либо суперизоляция из большого кол-ва слоев металлизиров. полимерной плёнки. В гелиевых К. применяются также тепловые экраны с использованием вспомогат. хладагента (напр., азота) либо охлаждения потоком паров гелия. В К. откачки паров 3Не тепловым экраном обычно служит ванна с 4Не (рис. 1). В гелиевой ванне располагается вакуумная камера, в к-рой подвешены обычно на тонкостенных нержавеющих трубках т. н. одноградусная камера (камера Уитли) и камера откачки 3Не. В первую камеру через дроссель непрерывно поступает жидкий 4Не из гелиевой ванны, к-рый одновременно откачивается, чем поддерживается равновесная темп-pa гелия (1,2-1,4К). Одноградусная камера в данной конструкции необходима для конденсации и макс. охлаждения 3Не, поступающего в камеру откачки 3Не. После одноградусной камеры поток жидкого 3Не также проходит через дроссель и поступает в камеру откачки 3Не. При этом ок. 10% поступающей жидкости расходуется на то, чтобы охладить её от 1,2К до 0.ЗК. Регулируя мощность, рассеиваемую в нагревателе, можно получать соответствующие температуры.


2531-104.jpg

Рис. 1. Принципиальная схема криостата непрерывной откачки паров 3Не: 1 - азотная ванна, 2 - медный экран, 3 - гелиевая ванна, 4 - вакуумная камера, 5 - одноградусная камера (камера непрерывной откачки 4Не), 6 - камера откачки 3Не, 7 - дроссели на линиях возврата 3Не и 4Не, 8 - экраны теплового излучения.


С понижением температуры всё более трудной задачей является установление хорошего теплового контакта между исследуемым образцом и хладагентом (это особенно относится к исследованиям, приводящим к разогреву образца,- оптическим, СВЧ и нейтронографическим). Для уменьшения теплового сопротивления между образцом и криожидкостью (см. Капицы скачок температуры)используют развитые поверхности из спечённого порошка меди пли серебра. В зависимости от выполняемых исследований К. могут быть снабжены оптич. окнами (оптический К.), сверхпроводящим соленоидом, СВЧ-вводами.

Давление насыщенных паров над жидкостью уменьшается экспоненциально с понижением температуры. Поток массы через границу раздела жидкой и газообразной фаз и через систему откачки пропорционален давлению пара, и, следовательно, хладопроизводительность откачки К. уменьшается экспоненциально с понижением температуры. Этим и определяется практич. температурный предел К. откачки.

Криостат (рефрижератор) растворения 3Не в 4Не. Действие К. этого типа основывается на том, что энтальпия раствора, рассчитанная на 1 моль 3Не в растворе, существенно больше энтальпии концентрированного 3Не. По этой причине процесс растворения 3Не в 4Не при пост. давлении сопровождается поглощением теплоты 2531-105.jpgQ. Большая хладопроизводительность этого метола связана также с тем, что при Т2531-106.jpg0 растворимость 3Не в 4Не остаётся конечной н равной 2531-107.jpg6% для насыщенного раствора. В этом случае при растворении 1 моля 3Не поглощается кол-во теплоты 2531-108.jpgQ=94,5 Т2т- - 12,5 Тc2, где Тт- темп-pa раствора 3Не в 4Не; Тс - темп-pa поступающего 3Не. Для непрерывной работы К. растворения требуется разделение используемых 3Не и 4Не. С этой целью производят откачку паров над смесью при Т2531-109.jpg (0,6-0,8)К. При этих темп-pax давление насыщенного пара 3Не более чем на порядок превышает давление паров 4Не. Т. о., откачивается практически 3Не. Др. способ разделения изотопов - прохождение раствора через сверхтекучий фильтр, пропускающий только сверхтекучий компонент 4Не и задерживающий нормальный компонент и примесь 3Не. В первом случае в К. растворения циркулирует 3Не (рис. 2, а), во втором случае - 4Не (рис. 2, б). Макс. охлаждение 3Не, поступающего в камеру растворения, достигается с помощью противоточных теплообменников. Темп-pa, получаемая в К. растворения с циркуляцией 3Не, определяется в основном эффективной площадью поверхности теплообменников (2531-111.jpg, м2), скоростью циркуляции 3Не (2531-112.jpg, моль/с) и притоком теплоты к камере растворения (2531-113.jpg, Вт):

2531-114.jpg

где Rк- УД- сопротивление Капицы (2531-115.jpg10-2 м2К/Вт).


2531-110.jpg

Рис. 2. Принципиальная схема криостатов растворения 3Не в 4Не: а - с циркуляцией 3Не; б - с 4Не (сосуд Дьюара и гелиевая ванна не показаны); 1 - одноградусная камера, 2 - вакуумная камера, 3 - камера растворения, 4 - камера испарения, 5 - сверхтекучий фильтр, 6 - непрерывный теплообменник, 7 - ступенчатые теплообменники, 8 - камера расслоения 3Не и 4Не, 9 - камера откачки 3Не, Р - раствор 3Не в 4Не, К - концентрированный 3Не.


Для получения мин. температур в К. растворения необходимо максимально ограничить приток теплоты и развить поверхность теплообменников. При 2531-116.jpg250 м2 в К. растворения получена температура 2 мК. К. растворения с циркуляцией 2531-117.jpg10-3 моль/с и хладопроизводительностью 2531-118.jpg100/T4 Вт (при Т2531-119.jpg6-30 мК) хорошо зарекомендовали себя в качестве рефрижераторов для предварит. охлаждения ступеней адиабатич. размагничивания (см. Магнитное охлаждение).

Кристаллизационный криостат 3Не основан на использовании Померанчука эффекта ,согласно к-рому в области температур 1-300 мК величина производной от давления по температуре 2531-120.jpg на кривой плавления 3Не отрицательна. Вследствие этого адиабатич. сжатие 3Не приводит к понижению его температуры с одноврем. образованием твёрдой фазы. Практически кристаллизация 3Не позволяет получить Т2531-121.jpg1 мК, если 3Не был предварительно охлаждён до 10-30 мК. Принципиальная схема кристаллизационного К. показана на рис. 3. Камера с подвижными стенками, заполненная 3Не, соединена хладопроводом с рефрижератором, обеспечивающим предварит. охлаждение (обычно К. растворения 3Не в 4Не). На хладопроводе имеется тепловой ключ, служащий для размыкания теплового контакта между рефрижератором и компрессионной камерой. Давление 3Не в компрессионной камере поднимают через систему (линию) заливки 3Не до 2,93 *106 Па (29,3 бар), что соответствует минимуму на кривой плавления 3Не. Дальнейшее сжатие 3Не через систему заливки невозможно, т. к. в последней образуется пробка твёрдого 3Не в области, соответствующей температуре 300 мК. Дальнейшее повышение давления в компрессионной камере обычно осуществляется прессом, заполненным 4Не. Кристаллизационный К. применяют для исследований низкотемпературных свойств жидкого и твёрдого 3Не.

2531-122.jpg

Рис. 3. Принципиальная схема кристаллизационного криостата 3Не: 1 - рефрижератор предварительного охлаждения, 2 - тепловой ключ, 3 - хладопровод, 4 - компрессионная камера, 5 - пресс с 4Не.

2531-123.jpg

Рис. 4. Принципиальная схема криостата ядерного размагничивания меди (ИФП АН СССР): 1 - ванна с гелием, 2 - вакуумная камера, 3,7 - тепловой экран, 4 - камера растворения 3Не в 4Не, 5 - конические тепловые контакты, 6 - сверхпроводящий тепловой ключ, 8 - хладопровод, 9 - экспериментальная камера, 10 - экспериментальный соленоид, 11 - основной сверхпроводящий соленоид, 12 - ступень ядерного размагничивания.


Криостаты адиабатич. размагничивания основаны на использовании магнитокалорического эффекта, заключающегося в изменении температуры Т магн. вещества при адиабатич. изменении напряжённости магн. ноля H. Для К. используют обычно парамагнитные спиновые системы, адиабатич. размагничивание к-рых приводит к понижению Т. Процесс понижения температуры при адиабатич. размагничивании ограничивается областью T, при к-рой спиновая система переходит в магнитоупорядоченное состояние. С др. стороны, для макс. хладопроизводительности метода желательно иметь стартовые условия вблизи температурной аномалии теплоёмкости системы, возникающей при равенстве тепловой и магн. энергий. Эти два требования определяют выбор хладагентов для К. адиабатич. размагничивания. В области стартовых температур 1000-100 мК используются парамагн. соли (напр., церий-магниевый нитрат позволяет получить температуру до 2мК). В области стартовых температур 100-10 мК применяются ванфлековские парамагнетики, эффективный магн. момент к-рых варьируется в широком диапазоне - от электронного до ядерного. Используя PrNi5, удаётся получить температуру до 0,5 мК. При более низких стартовых темп-pax и применении мощных сверхпроводящих соленоидов удаётся использовать эффект адиабатич. размагничивания ядерных спиновых систем.

К. размагничивания могут включаться последовательно. Так, в двухступенчатых К. размагничивания, когда первая массивная ступень из меди либо из PrNi5 при размагничивании охлаждает вторую медную ступень, после размагничивания последней удаётся получить температуру ядер меди 2531-124.jpg10 нК. При этом темп-pa кристаллич. решётки меди и электронов проводимости составляет 2531-125.jpg10 мкК.

На рис. 4 показана принципиальная схема К. ядерного размагничивания меди. Ядерная ступень, помещённая в поле. 2531-126.jpg80 кЭ, охлаждается мощным К. растворения до Т2531-127.jpg10 мК. Затем размыкается сверхпроводящий тепловой ключ и осуществляется размагничивание (в течение 2-10 ч). За это время в системе успевает установиться тепловое равновесие и охладиться экспериментальная камера. Т. о. удаётся охладить камеру, содержащую сверхтекучий 3Не, до Т2531-128.jpg100 мкК.

Литература по криостатам

  1. Справочник по физико-техническим основам криогеники, под ред. М. П. Малкова, 3 изд., М., 1985;
  2. Растворы квантовых жидкостей, М., 1973;
  3. Лоунасмаа О. В., Принципы и методы получения температуры ниже 1 К, пер. с англ., М., 1977.

Ю. М. Буньков

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution