к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Когерентное состояние квантового осциллятора

Когерентное состояние квантового осциллятора - состояние, максимально близкое к состоянию классич. осциллятора в том смысле, что произведение неопределённостей (дисперсий) координаты и импульса в этом состоянии принимает минимально возможное в рамках неопределённостей соотношения значение. Термин введён Р. Глаубером [1]. С аналогичным свойством волновые пакеты строились в начале развития квантовой механики Э. Шрёдингером [2]. В К. с. гармонич. осциллятора волновой пакет не расплывается, а его центр движется по классической траектории.

Дисперсии координаты и импульса одномерного квантового гармонич. осциллятора в К. с. (с вектором состояния 2511-56.jpg равны соответственно 2511-57.jpg и 2511-58.jpg где l - амплитуда нулевых колебаний, так что 2511-59.jpg. При этом изменение во времени ср. значений координаты и импульса соответствует классич. траекториям, а 2511-60.jpg и 2511-61.jpg остаются постоянными, т. е., эволюционируя, К. с. остаётся когерентным.

К. с. 2511-62.jpg осциллятора массы т и частоты 2511-63.jpg описывается нормированной волновой функцией, имеющей в координатном представлении вид гауссова волнового пакета (см. Гаусса распределение:)

2511-64.jpg

Здесь 2511-65.jpg , 2511-66.jpg - любое комплексное число, действит. часть к-рого связана со ср. значением оператора координаты 2511-67.jpg в состоянии 2511-68.jpg: 2511-69.jpg = =2511-70.jpg, а мнимая - со ср. значением оператора нмпульса 2511-71.jpg: 2511-72.jpg. Т. о., положение центра хс гауссова пакета в К. с. определяется числом2511-73.jpg: 2511-74.jpg . В импульсном представлении волновая функция К. с. также имеет вид гауссова пакета:

2511-75.jpg

Вместо операторов 2511-76.jpg и 2511-77.jpg удобно ввести операторы уничтожения 2511-78.jpg и рождения 2511-79.jpg:

2511-80.jpg

(крест означает эрмитово сопряжение). Название операторов связано с тем, что действие 2511-81.jpg на состояние 2511-82.jpg гармонич. осциллятора с заданной энергией 2511-83.jpg= =2511-84.jpg (n=0, 1, 2, . . .) переводит осциллятор в возбуждённое состояние 2511-85.jpg, увеличивая его энергию на квант энергии2511-86.jpg, а действие 2511-87.jpg на 2511-88.jpg уменьшает его энергию на этот же квант.

К. с. 2511-89.jpg является собственным состоянием оператора уничтожения:

2511-90.jpg

Оно получается действием унитарного оператора2511-91.jpg = =2511-92.jpgна вектор осн. (вакуумного) состояния 2511-93.jpg, 2511-94.jpg (звёздочкой помечено комплексное сопряжение).2511-95.jpgназ. оператором сдвига, т. к. он смещает центр волнового пакета на величину

2511-96.jpg

Скалярное произведение двух векторов К. с. (или матричный элемент единичного оператора в представлении К. с.) имеет вид

2511-97.jpg

и не равно нулю при 2511-98.jpg , т. е. К. с. неортогональны. Однако квадрат модуля скалярного произведения

2511-99.jpg

очень быстро стремится к нулю при 2511-100.jpg , что физически отвечает уменьшению перекрытия двух волновых пакетов, центры к-рых раздвигаются (поскольку 2511-101.jpg определяют центры этих пакетов). По состояниям 2511-102.jpg с заданной энергией К. с. разлагается в ряд:

2511-103.jpg

Это означает, что ехр2511-104.jpg является производящей функцией для состояний2511-105.jpg

Ср. значение энергии осциллятора в К. с. 2511-106.jpg определяется ф-лой

2511-107.jpg

а распределение по уровням энергии является распределением Пуассона:

2511-108.jpg

При этом эволюция К. с. задаётся ф-лой

2511-109.jpg

К. с. 2511-110.jpg образуют полную, точнее переполненную, систему векторов состояний; разложение единичного оператора 2511-111.jpg имеет вид

2511-112.jpg

Произвольный вектор состояния 2511-113.jpg может быть разложен по К. с.:

2511-114.jpg

В квантовой теории поля система частиц с целым спином - бозонов (фотонов, 2511-115.jpg-мезонов и т. д.) - описывается как бесконечный набор квантовых гармонич. осцилляторов. Возбуждённому состоянию осциллятора 2511-116.jpg отвечает при этом совокупность п бозонов с энергией2511-117.jpg. В этом случае оператор уничтожения а уменьшает, а оператор рождения 2511-118.jpg увеличивает число частиц в системе на единицу.

К. с. квантованного эл--магн. поля (и других бозе-полей) вводятся на основе представления гамильтониана поля в виде суммы гамильтонианов гармонич. осцилляторов, отвечающих разл. модам колебаний поля. Для моды определ. частоты и поляризации эл--магн. поля К. с. описывается приведёнными выше ф-лами, при этом в К. с. число фотонов неопределённо, а распределение по числу фотонов является распределением Пуассона. Если все осцилляторы поля находятся в К. с., то состояние квантового поля наиб. близко к классическому.

Важность К. с. в физике обусловлена тем, что во мн. случаях физ. квантованные поля находятся именно в таких состояниях. Напр., классич. ток, срздавае-мый движущимися электрич. зарядами, излучает фотоны, находящиеся в К. с. Инфракрасная расходимость в квантовой электродинамике объясняется и устраняется учётом того, что квантованное поле в случае малых частот находится в К. с. При точном квантовомеха-нич. описании когерентных источников света с необходимостью возникают К. с. эл--магн. поля. Свойства сверхтекучести и сверхпроводимости также могут быть объяснены тем, что соответственно сверхтекучая компонента в жидком гелии и куперовские пары в сверхпроводниках находятся в К. с. Это же относится и к др. явлениям с упорядочением.

Для произвольных квантовых систем с N степенями свободы К. с. вводятся по след. схеме. Находятся N неэрмитовых интегралов движения2511-119.jpg с бозонными коммутац. соотношениями2511-120.jpg где 2511-121.jpg - оператор эволюции системы, переводящий вектор состояния, заданный в нач. момент времени, 2511-122.jpg , в вектор состояния 2511-123.jpg; 2511-124.jpg - оператор уничтожения, действит. и мнимая части к-рого определяют нач. точку траектории системы в фазовом пространстве ср. координат и импульсов (2511-125.jpg - символ Кронекера). Затем находится нормированный вакуумный вектор (вектор осн. состояния) из решения системы ур-ний 2511-126.jpg. Действием на этот вектор оператора сдвига строится К. с.:

2511-127.jpg

удовлетворяющее временному ур-нию Шрёдингера. Для квантовых систем общего вида ср. изменения координат и импульсов, вообще говоря, не соответствуют классич. траекториям, а волновые функции в К. с. являются гауссовыми пакетами только в нач. момент времени - произведение неопределённостей координаты и импульса не остаётся со временем равным2511-128.jpg

Однако существенным для расчётов является свойство К. с. быть производящей функцией для состояний - аналогов состояний с заданной энергией стационарного квантового осциллятора. Как пример для квантовых систем, описываемых нестационарным гамильтонианом квадратичной формы по операторам координат и импульсов, это свойство позволяет найти точно (не по теории возмущений) через многомерные полиномы Эрмита вероятности переходов между уровнями энергии N-мерного гармонич. осциллятора при параметрич. возбуждении самого общего типа [3].

Особым видом К. с. являются т. н. сжатые (squeezed) К. с. В этих состояниях волновые пакеты - гауссовы, по 2511-129.jpg , 2511-130.jpg, где 2511-131.jpg - любое положит. число; при этом по-прежнему 2511-132.jpg=2511-133.jpg Такие состояния важны, напр., при попытках (пока не реализованных) построить детекторы гравитац. волн интерференц. типа.

Литература по когерентным состояниям квантового осциллятора

  1. Glauber R. J., Photon correlations, "Phys. Rev. Lett.", 1963, v. 10, p. 84;
  2. Sсhrodinger E., Der stetige Ubergang von der Mikro- zur Makromechanik, "Naturwiss.", 1926, Bd 14, S. 664;
  3. Mалкин И. А., Манько В. И., Динамические симметрии и когерентные состояния квантовых систем, М., 1979;
  4. Когерентные состояния в квантовой теории. Сб. ст., пер. с англ., М., 1972.

В. И. Манько

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution