к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Кинетическое уравнение Больцмана

Кинетическое уравнение Больцмана - интегродифференц. ур-ние, к-рому удовлетворяют неравновесные одночастичные функции распределения системы из большого числа частиц, напр, функция распределения2505-29.jpg молекул газа по скоростям2505-30.jpg и координатам r, функции распределения электронов в металле, фононов в кристалле и т. п. К. у. Б.- осн. ур-ние мик-роскопич. теории неравновесных процессов (кинетики физической), в частности кинетической теории газов. К. у. Б. в узком смысле наз. выведенное Л. Больцма-ном (L. Boltzmann) кинетич. ур-ние для газов малой плотности, молекулы к-рых подчиняются классич. механике. К. у. Б. для квазичастиц в кристаллах, напр. для электронов в металле, наз. также кинетич. ур-ниями или ур-ниями переноса.

К. у. Б. представляет собой ур-ние баланса числа частиц (точнее, точек, изображающих состояние частиц) в элементе фазового объёма 2505-31.jpg ; dr= =dxdydz)и выражает тот факт, что изменение функции распределения частиц2505-32.jpg со временем t происходит вследствие движения частиц под действием внеш. сил и столкновений между ними. Для газа, состоящего из частиц одного сорта, К. у. Б. имеет вид

2505-33.jpg

где 2505-34.jpg - изменение плотности числа частиц в элементе фазового объёма 2505-35.jpg за единицу времени, F= =F(r,t) - сила, действующая на частицу (может зависеть также и от скорости), 2505-36.jpg - изменение функции распределения вследствие столкновений (интеграл столкновений). Второй и третий члены ур-ния (1) характеризуют соотв. изменения функции распределения в результате перемещения частиц в пространстве и действия внеш. сил. Её изменение, обусловленное столкновениями частиц, связано с уходом частиц из элемента фазового объёма при т. н. прямых столкновениях и пополнением объёма частицами, испытавшими "обратные" столкновения. Если рассчитывать столкновения по законам классич. механики и считать, что нет корреляции между динамич. состояниями сталкивающихся молекул, то

2505-37.jpg

2505-38.jpg - скорости частиц до столкновения,2505-39.jpg - скорости тех же частиц после столкновения, 2505-40.jpg - величина относит. скорости сталкивающихся частиц, 2505-41.jpg - дифференц. эфф. сечение рассеяния частиц в телесный угол 2505-42.jpg в лаб. системе координат, 2505-43.jpg- угол между относит. скоростью и линией центров. Напр., для жёстких упругих сфер, имеющих радиус R, 2505-44.jpg= 2505-45.jpg , для частиц, взаимодействующих по закону центр. сил, 2505-46.jpg (b - прицельный параметр, 2505-47.jpg - азимутальный угол линии центров).

К. у. Б. учитывает только парные столкновения между молекулами; оно справедливо при условии, что длина свободного пробега молекул значительно больше линейных размеров области, в к-рой происходит столкновение (для газа из упругих частиц это область порядка диаметра частиц). Поэтому К. у. Б. применимо для не слишком плотных газов. Иначе будет несправедливо осн. предположение об отсутствии корреляции между состояниями сталкивающихся частиц (гипотеза молекулярного хаоса). Если система находится в статистич. равновесии, то интеграл столкновений (2) обращается в нуль и решением К. у. Б. является Максвелла распределение.

При более строгом подходе для построения К. у. Б. исходят из Лиувилля уравнения для плотности распределения всех молекул газа в фазовом пространстве, из к-рого получают систему ур-ний для функций распределения одной, двух и т д. молекул (Боголюбова уравнения). Эту цепочку ур-ний решают с помощью разложения по степеням плотности частиц с использованием граничного условия ослабления корреляций, заменяющего гипотезу молекулярного хаоса.

Решение К. у. Б. при разл. предположениях о силах взаимодействия между частицами - предмет кинетич. теории газов, к-рая позволяет вычислить кинетические коэффициенты и получить макроскопич. ур-ния для процессов переноса (вязкости, диффузии, теплопроводности).

Для квантовых газов значения эфф. сечений рассчитывают на основе квантовой механики с учётом неразличимости одинаковых частиц и того факта, что вероятность столкновения зависит не только от произведения функций распределения сталкивающихся частиц, но и от функций распределения частиц после столкновения. Для фермионов в результате этого вероятность столкновения будет уменьшаться, а для бозонов - увеличиваться. Оператор столкновения в квантовом случае принимает вид

2505-48.jpg

где знак минус соответствует Ферми - Дирака статистике, а знак плюс - Бозе - Эйнштейна статистике, g - статистич. вес состояния (g = l для частиц со спином, равным нулю, и g=2 для частиц со спином2505-49.jpg),2505-50.jpg- импульс частицы. функции2505-51.jpg нормированы так, что представляют ср. число частиц в точке 2505-52.jpg. Равновесные функции распределения Ферми и Бозе обращают в нуль оператор столкновения (3).

Важным частным случаем К. у. Б. является кинетич. ур-ние для нейтронов, к-рые рассеиваются и замедляются ядрами среды. В этом случае внеш. сил нет и в ур-нии (1) надо положить F=0. Плотность числа нейтронов обычно мала, так что можно пренебречь столкновениями между ними и учитывать лишь их столкновения с ядрами среды (см. Диффузия нейтронов, Замедление нейтронов).

Процессы переноса, связанные с движением электронов в металле, также можно исследовать с помощью К. у. Б. В отсутствие колебаний решётки электроны свободно распространяются в металле н описываются плоскими волнами, модулированными с периодом решётки и зависящими от волнового вектора k; и номера энергетич. зоны l. Тепловое движение атомов решётки нарушает периодичность и приводит к рассеянию электронов (столкновениям между электронами и фононами). функция распределения электронов n(k, l, t)удовлетворяет К. у. Б. типа (1), в к-ром F= 2505-53.jpg (E и Н - напряжённости электрич. и магн. полей, е - заряд электрона), а интеграл столкновений имеет вид

2505-54.jpg

где n=n(k,l), 2505-55.jpg - волновые векторы и номера зон до и после столкновения, N= =N (f, s) - функция распределения фононов, f и s - волновой вектор и поляризация фононов, 2505-56.jpg - нач. и конечная энергии электрона при возбуждении фонона с энергией 2505-57.jpg- дельта-функция, 2505-58.jpg - матричные элементы перехода электрона из состояния k, l в состояние2505-59.jpg, к-рые оценивают, исходя из определ. гипотез о механизме взаимодействия электронов с решёткой. Выражение (4) получено в предположении, что время свободного пробега электронов значительно больше неопределённости для времени столкновения. Теория электропроводности, термоэлектрич. и гальвано-магн. явлений в металлах и полупроводниках основана на решении К. у. Б.

В нек-рых случаях конденсиров. систем, когда известен характер теплового движения, можно построить К. у. Б. для элементарных возбуждений (квазичастиц). Напр., теория процессов переноса энергии в кристал-лич. решётке основана на ур-нии такого типа. Если в выражении для потенц. энергии решётки ограничиться квадратичными относительно смещений атомов членами, то тепловое движение атомов в кристалле описывается свободно распространяющимися фононами - квантами нормальных колебаний решётки. Учёт членов 3-й степени приводит к возможности столкновений между фононами. В результате функция распределения фононов N (f, s) будет изменяться во времени согласно кинетич. ур-нию

2505-60.jpg

коэф. при кубич. членах в разложении потенц. энергии кристалла по отклонениям атомов из положения равновесия, 2505-61.jpg - плотность. Ур-ние (5) описывает тройные столкновения фононов с уничтожением двух фононов и рождением одного (и обратные им процессы). Оно является ур-нием баланса фононов, движущихся в волновом пакете с групповой скоростью2505-62.jpg и сталкивающихся между собой. Теория теплопроводности непроводящих кристаллов основана на решении ур-ния (5) при малых отклонениях от статистич. равновесия.

К. у. Б. применимо также к процессам, в к-рых частицы испытывают взаимные превращения, напр, в теории ливней, образующихся при попадании космич. частиц больших энергий в атмосферу. В этом случае кинетич. ур-ния составляются как система ур-ний баланса для заряж. частиц и фотонов в данном интервале энергии и импульса. Эти ур-ния выражают тот факт, что изменение функции распределения (кроме эффектов рассеяния) происходит вследствие образования пар заряж. частиц фотонами и испускания заряж. частицами фотонов в виде тормозного излучения в поле ядер.

На решении этих ур-ний основана каскадная теория ливней.

Литература по кинетическому уравнению Больцмана

  1. Больцман Л., Лекции по теории газов, пер. с-нем., М., 1953;
  2. Тимирязев А. К. Кинетическая теория материи, М., 1954.
  3. Боголюбов Н. Н. Проблемы динамической теории в статистической физике, М-Л., 1946,
  4. Боголюбов Н. Н. Избр. труды по статистической физике, М., 1979;
  5. Чепмен С., Каулинг Т., Математическая теория неоднородных газов, пер. с англ., М., 1960;
  6. Силин В. П., Введение в кинетическую теорию газов, М., 1971;
  7. Либов Р., Введение в теорию кинетических уравнений, пер. с англ., М., 1974;
  8. Климонтович Ю. Л., Кинетическая теория неидеального газа и неидеальной плазмы, М., 1975;
  9. Ферцигер Дж.. Капер Г., Математическая теория процессов переноса в газах, пер. с англ., М., 1976;
  10. Черчиньяни К., Теория и приложения уравнения Больцмана, пер. с англ., М., 1978;
  11. Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971;
  12. Валеску Р., Равновесная и неравновесная статистическая механика, пер. с англ., т. 2, М., 1978;

Д. Я. Зубарев

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 16.09.2019 - 03:11: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
14.09.2019 - 18:23: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
13.09.2019 - 09:08: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
12.09.2019 - 17:47: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
12.09.2019 - 16:47: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
12.09.2019 - 13:10: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
08.09.2019 - 03:42: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
07.09.2019 - 07:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Декларация Академической Свободы - Карим_Хайдаров.
07.09.2019 - 03:18: ЭКОЛОГИЯ - Ecology -> Проблема ГМО - Карим_Хайдаров.
05.09.2019 - 13:33: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
05.09.2019 - 13:31: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Негребы - Карим_Хайдаров.
01.09.2019 - 18:04: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution