к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Максвелла распределение

Максвелла распределение - распределение по скоростям частиц (молекул) макроскопич. физ. системы, находящейся в статистич. равновесии, в отсутствие внеш. поля при условии, что движение частиц подчиняется законам классич. механики. Установлено Дж. К. Максвеллом (J. С. Maxwell) в 1859. Согласно M. р., вероятное число частиц в единице объёма, компоненты скоростей к-рых лежат в интервалах от Vx до3006-12.jpg, от3006-13.jpgдо3006-14.jpgи от3006-15.jpgдо3006-16.jpg, равно 3006-17.jpg, где3006-18.jpg

3006-19.jpg - функция распределения Максвелла по скоростям, n - число частиц в единице объёма, т - масса частицы, T - абс. температура. Отсюда следует, что число частиц, абс. значения скоростей к-рых лежат в интервале от и до u + du, равно

3006-20.jpg

Это распределение наз. M. р. по абс. значениям скоростей. функция F(V)достигает максимума при скорости 3006-21.jpg наз. наиб, вероятной скоростью. Для молекул H2 при T - 273К uB ~ 1500 м/с. При помощи M. р. можно вычислить ср. значение любой функции от скорости молекул: ср. квадрат скорости3006-22.jpg ср. квадратичную скорость3006-23.jpg ср. арифметич. скорость 3006-24.jpg к-рая в

3006-25.jpg раза больше uB (рис.).

M. р. по относит, скоростям молекул и имеет вид

3006-26.jpg

откуда следует, что ср. относит, скорость молекул равна3006-27.jpg

M. р. не зависит от взаимодействия между молекулами и справедливо не только для газов, но и для жидкостей, если для них возможно классич. описание.


3006-28.jpg

В случае многоатомных молекул M. р. имеет место для постунат. движения молекул (для скорости их центра тяжести) и не зависит от внутримолекулярного движения и вращения даже в том случае, когда для них необходимо квантовое описание. M. р. справедливо для броуновского движения частиц, взвешенных в жидкости или газе.

Максвелл использовал для обоснования M. р. детального равновесия принцип. M. р. можно получить из канонического распределения Гиббса для классич. системы, интегрируя по всем пространственным координатам и по всем скоростям, кроме одной, т. к. в классич. случае распределение по скоростям не зависит от распределения по пространственным координатам. M. р. является частным решением кинетического уравнения Больцмана для случая статистич. равновесия в отсутствио впеш. полей. M. р. обращает в нуль интеграл столкновения этого ур-ния, выражающего баланс между прямыми и обратными столкновениями. Во внеш. потенциальном поле имеет место распределение Максвелла - Больцмана (см. Болъцма-на распределение). M. р.- предельный случай Базе - Эйнштейна распределения и Ферми - Дирака распределения в случае, когда можно пренебречь явлением квантового вырождения газа. M. р. подтверждено экспериментально О. Штерном (О. Stern) в 1920 в опытах с молекулярными пучками от источника, помещённого внутри вращающейся цилиндрич. поверхности, и позднее (1947) в опытах И. Эстермана (I. Estermann), О. Симпсона (О. Simpson) и Штерна по свободному падению молекул пучка под действием силы тяжести.

Литература по распределению Максвелла

  1. Pамзей H., Молекулярные пучки, пер. с англ., M., 1960;
  2. Xир К., Статистическая механика, кинетическая теория и стохастические процессы, пер. с англ., M., 1976, гл. 1.

Д. H. Зубарев

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что низкочастотные электромагнитные волны частотой менее 100 КГц коренным образом отличаются от более высоких частот падением скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тысяч кмилометров в секунду при 100 кГц до примерно 7 тыс км/с при 50 Гц.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 25.01.2021 - 18:00: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.
25.01.2021 - 07:49: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
25.01.2021 - 06:27: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
25.01.2021 - 05:48: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
24.01.2021 - 11:45: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
23.01.2021 - 12:06: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
23.01.2021 - 09:08: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ФАЛЬСИФИКАЦИЯ ИСТОРИИ - Карим_Хайдаров.
23.01.2021 - 08:03: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
23.01.2021 - 06:26: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Анны ван Дэнски - Карим_Хайдаров.
22.01.2021 - 18:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Амары Ельской - Карим_Хайдаров.
22.01.2021 - 13:40: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
20.01.2021 - 17:39: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Проблема народного образования - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution