к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Квазиоптика

Квазиоптика - асимптотич. метод для описания дифракции коротких волн в системах, размеры к-рых d cущественно превышают длину волны l. К. уточняет геометрической оптики метод в окрестностях каустик н фокусов, в зонах полутени, при описании широких волновых пучков и т. п. Обособившись сначала в самостоят, раздел электродинамики, К. в дальнейшем приобрела универсальный характер как метод, пригодный для волн любой природы и в любом диапазоне, если только выполнен необходимый критерии её применимости: dдl. К. имеет дело с описанием волновых полей, характеризующихся разл. масштабами изменения комплексной лучевой амплитуды в направлении локального волнового вектора и в перпендикулярном направлении. В отличие от геом. оптики, описывающей распространение волн в каждой лучевой трубке независимо, К. учитывает эффекты поперечной диффузии лучевой амплитуды в смежные лучевые трубки, т. е. по фронтам распространяющихся волн.
Волновые пучки. Простейшей моделью К. является монохроматич. параксиальный волновой пучок в однородной среде, образуемый соседними зонами полутени при дифракции плоской волны на большом (в масштабе l) отверстии в непрозрачном экране (рис. 1). Такой пучок в случае скалярного поля можно описать функцией

u=А(х, у, z)ехp(-ikz+iwt), (1)

где медленная амплитуда А(х, у, z)меняется в масштабах l^дl по х, у и l||=kl||2дl^ - по z, k=2p/l=w/с. Подстановка (1) в волновое ур-ние
013-102.jpg
и пренебрежение членом Р2A/Рz2, имеющим по отношению к др. слагаемым порядок (kl^)-2Ъ1, приводят к параболич. ур-нию
013-103.jpg
описывающему поперечную диффузию комплексной лучевой амплитуды. Ур-ние (2) сходно с ур-нием Шрёдингера в квантовой механике.
013-104.jpg
Рис. 1. Формирование волнового пучка при дифракции плоской волны на большом отверстии.

013-105.jpg
Рис. 2. Гауссов пучок.

В теории эл--магн. поля оно впервые было получено М. А. Леонтовичем в 1944 и носит его имя. Мнимость коэф. диффузии D=(2ik)-1 в (2) означает, что диффузия амплитуды сопровождается изменением фазы (см. Леонтовича параболическое уравнение). Решение параболич. ур-ния (2), описывающее амплитуду А(х, у, z) по её значению А(х, у, 0) в сечении z=0, можно представить в виде
013-106.jpg
(дифракция Френеля).
Важным классом решений ур-ния (2) являются гауссовы пучки, моды к-рых имеют автомодельный характер, т. е. сохраняют с точностью до масштаба свою структуру в разных сечениях z=const. Осн. гауссов пучок (рис. 2) описывается функцией
013-107.jpg
где А0 - амплитуда пучка, 013-108.jpg -радиус пучка, R(z)=-z-zд2/z - радиус кривизны его фазового фронта, а0 - радиус пучка в сечении z=0. Величину zд=ka02 наз. дифракц. длиной пучка; на расстоянии z=zд радиус пучка равен а0Ц2, а радиус кривизны фазового фронта минимален: |R(zд)|=2zд. Геом. расходимость qг=a(z)/|R(z)| и дифракц. расходимость qд=l/ka(z) гауссова пучка нулевого порядка в сечении z образуют инвариант q2п=q2г+q2д=(ka0)-2, равный полной расходимости пучка на бесконечности. При z<zд в пучке преобладает дифракц. расходимость, а при z>zд - геометрическая. Поперечная структура пучков высших порядков Аm,n(х, у, z) описывается произведением функций Эрмита соответствующих порядков. Радиусы этих пучков и их расходимости в направлениях х и у в 013-109.jpg и 013-110.jpg раз больше, чем для осн. пучка. Особенностью осн. гауссова пучка является возможность представления его в виде сферич. волны, выходящей из комплексной точки и имеющей комплексную кривизну 013-111.jpg . Изменение параметров гауссова пучка, описываемого ф-лой (4), эквивалентно при таком подходе уменьшению радиуса кривизны Rk сферич. волны на величину z: Rk(z)=Rk(0)-z. Сферич. волне сопоставляется матрица
013-112.jpg
образованная вектором r^(х, у) нек-рой точки на фронте волны и поперечной проекцией лучевого вектора s^=-r^/Rk в той же точке. Преобразование гауссова пучка оптич. системой с произвольной матрицей перехода (лучевой матрицей)
013-113.jpg
как и для сферич. волн, сводится к перемножению матриц S и Q. При этом выходной пучок описывается обычной ф-лой геом. оптики: K'k=(КkА-B)/(KkС-D).
Квазиоптические системы. Практически важным классом являются периодич. квазиоптич. системы: открытые волноводы (лучеводы) и открытые резонаторы. Если S - матрица перехода такой системы, то её собств. волны определяются из решения ур-ния
013-114.jpg
условием
013-115.jpg
где
013-116.jpg
При |А+D|<2 собств. значения р комплексны, |р|=1 и собств. волнами волновода, согласно (6), являются гауссовы пучки. Это область устойчивости, в к-рой лучи в периодич. системе совершают финитное движение. При |A+D|>2 собственными являются сферич. нелокализованные волны. Это область неустойчивости, в к-рой движение лучей инфинитно: |pl|<l, |p2|>1. Примером лучевода может служить периодич. последовательность линз (линзовая линия, рис. 3)

013-117.jpg

или эллиптич. зеркал (зеркальная линия, рис. 4), осуществляющих последоват. фазовую коррекцию пучка. Область устойчивости таких линий определяется условием (L/4)<F<:, где F - фокусное расстояние одного элемента линии, L - расстояние между ними. В открытых резонаторах (рис. 5) поле формируется волновыми пучками, многократно отражающимися от зеркал. Области устойчивости и структуры пучков в резонаторах со сферич. зеркалами определяются ур-нием (5), где под S в общем случае следует понимать лучевую матрицу, отвечающую полному обходу пучком резонатора (см. Оптический резонатор).
013-118.jpg
Квазиоптич. системы открытого типа заменили традиционные в диапазоне СВЧ объёмные резонаторы и волноводы металлические в диапазонах миллиметровых, субмиллиметровых и оптич. волн. Прежние системы оказались непригодными из-за повышения требований к точности изготовления элементов вследствие уменьшения их размеров, снижения электрич. прочности, значит, возрастания потерь в экранирующих проводниках. Использовать же экранированные системы с dдl (т. е. сверхразмерные волноводы и резонаторы) трудно вследствие уплотнения спектра собств. волновых чисел (волноводы) или собств. частот (резонаторы), практически сливающихся в сплошной спектр из-за уширения отд. линий. В открытых системах разрежение спектра (селекция мод) происходит из-за отсутствия боковых стенок, что не только ограничивает допустимый диапазон волновых векторов параксиальной областью, но и позволяет подбором размеров зеркал или диафрагм увеличивать потери на излучение (дифракц. потери) мод высших типов.
013-119.jpg
Рис. 6. Формирование волнового пучка в резонаторе с плоскими зеркалами (а) и в диафрагменной линии (б).

В квазиоптич. системах с огранич. корректорами гауссовы пучки уже не являются собств. модами, структура к-рых определяется теперь из решения ур-ния типа 013-120.jpg с интегральным оператором 013-121.jpg, построенным аналогично (3) с учётом фазовой коррекции пучка зеркалами или линзами. Помимо геометрии корректоров в диафрагмиров. системах важную роль играет параметр N=a2/lL, равный квадрату отношения радиуса корректора к радиусу первой зоны Френеля. Этот параметр определяет степень ограничения пучков, а следовательно, и уровень дифракц. потерь. Дифракц. потери, слабо возмущающие структуру полей в открытых волноводах и резонаторах с фокусирующими элементами, полностью формируют её в резонаторах с плоскими зеркалами и эквивалентных им линиях, образованных периодич. последовательностью поглощающих диафрагм (рис. 6). В таких системах устанавливаются собств. структуры волновых пучков, убывающие к краю зеркала или диафрагмы, что приводит к снижению потерь на излучение. Параксиальные волновые пучки могут формироваться не только в свободном пространстве, но и в слабонеоднородных средах, напр, в рефракционных волноводах, используемых в технике (см. Волоконная оптика), и природных (ионосферные и атмосферные волноводы, подводный звуковой канал). Их описывают при помощи параболич. ур-ния
013-122.jpg
обобщающего ур-ние (2) на случай среды с перем. коэф. преломления 013-123.jpg , где 013-124.jpg. В частности, в волноводах с 013-125.jpg (х - поперечная координата) собств. модами по-прежнему являются гауссовы пучки. Если коэф. преломления зависит от амплитуды поля, то параболич. ур-ния типа (7) применяют для описания волн в нелинейных средах (см., напр., Самофокусировка света). Квазиоптич. подход на основе ур-ния (7) можно развить и для описания квазимонохроматич. волновых пакетов в диспергирующих средах. На основе соответствующих решений геометрической оптики строится также К. сильно расходящихся пучков и полей около каустик.

Литература по квазиоптике

  1. Леонтович М. А., Об одном методе решения задач о распространении электромагнитных волн вдоль поверхности земли, "Изв. АН СССР. Сер. физ.", 1944, т. 8, с. 16;
  2. Малюжинец Г. Д., Развитие представлений о явлениях дифракции, "УФН", 1959, т. 69, с. 321;
  3. Квазиоптика, пер. с англ, и нем., М., 1966;
  4. Вайнштейн Л. А., Открытые резонаторы и открытые волноводы, М., 1966;
  5. Маркузе Д., Оптические волноводы, пер. с англ., М., 1974.

С. Н. Власов, В. И. Таланов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что в 1965 году два американца Пензиас (эмигрант из Германии) и Вильсон заявили, что они открыли излучение космоса. Через несколько лет им дали Нобелевскую премию, как-будто никто не знал работ Э. Регенера, измерившего температуру космического пространства с помощью запуска болометра в стратосферу в 1933 г.? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution