к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Ионизационная камера

Ионизационная камера - прибор для регистрации и спектрометрии ионизирующих частиц методом измерения величины ионизации (числа пар ионов), производимой этими частицами в газе. Простейшая И. к. представляет собой два электрода, помещённых в заполненный газом объём. Конструктивно электроды могут быть выполнены в виде плоского, цилиндрич. или сферич. конденсатора. Рабочим объёмом И. к. является пространство между электродами. Частицы ионизуют газ в рабочем объёме, и образовавшиеся электроны и ионы движутся под действием пост, электрич. поля Е в направлении электродов, создавая ток в цепи И. к. Ток измеряется регистрирующим устройством (рис. 1). Величина Е должна быть достаточно большой для предотвращения рекомбинации электронов и ионов. В области Е<E1 (рис. 2) скорость дрейфа электронов мала и часть из них рекомбинирует по дороге. В интервале Е1<Е<Е2 все электроны достигают анода (режим насыщения),
10-1.jpg
Рис. 1. Схема включения интегрирующей ионизационной камеры.
10-2.jpg
Рис. 2. Зависимость ионизационного тока I от приложенного электрического поля Е.

а при Е>Е2 начинается процесс лавинного размножения ионов вблизи анода. И. к. отличается от др. газовых детекторов (пропорциональных камер, Гейгера счетчиков и др.) тем, что в ней не используется механизм газового усиления, т. е. размножение ионов за счёт лавинообразного процесса вблизи анода. Ток через И. к. в области насыщения I0 пропорционален энергии E, выделяемой ионизующей частицей в объёме И. к., т. е. потоку частиц j, падающему на И. к.:10-3.jpg где е - заряд электрона, E0 - энергия, затрачиваемая на образование одной электрон-ионной пары. Режим насыщения достигается при достаточно большой скорости дрейфа электронов и ионов. Скорость увеличивают в 10-40 раз, добавляя к чистому Ar 2,5 - 30% многоатомных газов (Н2, СН4 и др.). При работе с чистыми многоатомными газами для насыщения требуются существенно большие Е. Ионизирующие частицы могут проникать в рабочий объём И. к. через тонкие окна либо непосредственно через стенки камеры. Иногда радиоакт. источник помещают внутрь И. к. в виде тонкого слоя на поверхности электродов или вводят в виде радиоакт. примеси к газу. В др. случаях ионизирующие частицы образуются непосредственно в рабочем объёме камеры в результате ядерных реакций, идущих под действием внеш. облучения в наполняющем И. к. газе, либо в мишени на поверхности электрода [1, 2, 3]. Различают импульсные и интегрирующие И. к. Первые И. к. служат для регистрации отд. импульсов, вызываемых каждой ионизирующей частицей. Если поток частиц через И. к. достаточно велик, импульсы на выходе сливаются и через камеру протекает ток I (рис. 1), к-рый пропорционален суммарному ср. энерговыделелию в И. к. в единицу времени. Интегрирующие И. к. применяются в радиометрии для измерения активности радиоакт. препаратов и для определения энергии излучения, поглощённой в единице массы вещества (см. Доза
10-4.jpg
Рис. 3. Схема включения импульсной ионизационной камеры.

излучения) [2], а также для измерения н контроля интенсивности выведенных из ускорителей пучков заряж. частиц. В импульсных И. к. длительность импульса зависит от времени дрейфа электронов и постоянной времени RС, где С=Ску+С', где Ск - ёмкость И. к., Су - входная ёмкость усилителя, С' - паразитная ёмкость подводящих проводов, R - эквивалентное сопротивление нагрузки. Время дрейфа зависит от состава газовой смеси, приложенного напряжения и геометрии И. к. (рис. 3).
10-5.jpg
Рис. 4. Трёхэлектродная импульсная ионизационная камера.

Импульсные И. к. широко используются в ядерной физике. Возможности импульсных И. к. возросли в связи с прогрессом в технике усиления слабых сигналов, связанным с появлением малошумящих полевых транзисторов. В качестве импульсной И. к. обычно используют И. к. с сеткой (рис. 4). Рабочим объёмом является объём между катодом и сеткой. Образовавшиеся в рабочем объёме электроны под действием электрич. поля E(1) дрейфуют к сетке, проходят сквозь сетку, увлекаемые более сильным полем E(2), действующим между анодом и сеткой, и собираются на аноде. Собирание электронов происходит за неск. мкс. За это же время положит, ионы, обладающие в 103 раз меньшей подвижностью, практически остаются на месте. Сетка экранирует анод от индукц. воздействия положит, ионов. Поэтому анодный сигнал оказывается пропорциональным собранному на аноде заряду, к-рый, в свою очередь, пропорционален энергии ионизирующей частицы. Такая И. к. позволяет также определить пространств, положение следа (трека) частицы путём регистрации катодного сигнала, времени его задержки по отношению к анодному и фронта нарастания анодного сигнала. Разбивая анод на неск. частей, можно получить информацию о длине трека. Энергетич. разрешение импульсных И. к. определяется шумом усилителя сигналов и флуктуацией числа пар ионов, образованных ионизирующими частицами фиксированной энергии (флуктуации Фано). Флуктуации Фано можно уменьшить, подбирая состав газа (Не+Аr; Ar+C2H2 [4]). Лучшее разрешение, достигнутое в И. к. при измерении спектра a-частиц 12 кэВ (полная ширина линии на половине высоты; при энергии a-частиц Eа=5,5МэВ. При этом газнаполнитель импульсной И. к. должен иметь высокую степень чистоты относительно эл--отрицат. примесей (O2, Н2O). Импульсные И. к. применяются при исследовании альфа-распада ядер (измерение энергетич. спектров a-частиц, угл. a-g-корреляций, детектирование слабых a-активностей); при исследовании деления ядер (измерении энергетич. и угл. распределений осколков спонтанного или вынужденного деления ядер; поиск новых спонтанно делящихся ядер [5]); при исследовании мюонного катализа ядерного синтеза; в спектрометрии заряж. продуктов катализируемой мюонами реакции d-d-синтеза в наполненной дейтерием И. к. высокого давления [6]; при исследовании упругого рассеяния частиц высокой энергии (спектрометрия ядер отдачи, возникающих в процессе рассеяния частиц высокой энергии на ядрах Н, D или Не, наполняющих рабочий объём И. к. [7]); в качестве т. н. DE - детектора для идентификации ядерных частиц [8].

Литература по ионизационным камерам

  1. Векслер В., Грошев Л., Исаев Б., Ионизационные методы исследования излучений, 2 изд., М.- Л., 1950;
  2. Аглинцев К. К., Дозиметрия ионизирующих излучений, 2 изд., М., 1957;
  3. Wilkinsоn D. H., lonization chambersand counters, Camb., 1950;
  4. Alkhazov G. D., Komar A. P., Vрrоbev A. A., lonization fluctuations and resolution of ionization chambers and semiconductor detectors, "Nucl. Instr. and Meth.", 1967, v. 48, p. 1;
  5. Ivanоv M. P. и др.. Study of 238U spontaneous fission using a double ionization chamber, там же, 1985, v. A234, p. 152;
  6. Balin D. V. и др., Experimental investigation of the muon catalyzed dd-fusion, "Phys. Lett.", 1984, v. 141 B, N 3/4, p. 173;
  7. Вurq J. P. и др., Soft p-pand pp elastic scattering in the energy range 30 to 345 GeV, "Nucl. Phys.", 1983, v. B217, p. 285;
  8. Fulbright H. W., lonization chambers, "Nucl. Instr. and Meth.", 1979,v. 162, N 1/3, p. 21.

А. А. Воробьев, Г. А. Королев

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution