к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Радиометрия

Радиометрия - совокупность методов измерений активности (числа распадов в единицу времени) радионуклидов, содержащихся в радиоакт. источниках. Родоначальники- Э. Резерфорд (В. Rutherford) и X. Гейгер (Н. Geiger), впервые в 1903 измерившие число a-частиц, испускаемых в 1 с 1 г Ra (уд. активность). В 1899 Ю. Эльстер (J. Elster) и В. Г. Гайтлер (W. Н. Heitler) установили экспоненциальное убывание со временем числа атомов чистого радионуклида.

Активность. Осн. закон радиоакт. распада имеет

вид:

4023-14.jpg

где N - число атомов радионуклида, l - постоянная распада, 4023-15.jpg- период полураспада (см. Радиоактивность). Кол-во атомов, оставшееся спустя промежуток времени t, определяется соотношением

4023-16.jpg

Постоянная распада l практически не зависит от таких внеш. факторов, как давление, темп-pa и т. д.; в нек-рых случаях наблюдается слабая зависимость от хим. окружения, напр. для 90MNb в металле по сравнению с 90MNb во фторидном комплексе изменение l достигает почти 4% (индекс "м" означает изомерное состояние, см. Изомерия ядерная). Активность А радионуклида определяется выражением

4023-17.jpg

где l выражена в с.

Единицей активности в системе СИ является Бек-керель (Бк), равный 1 распаду в 1 с. Исторически первая единица активности Кюри (Ки) была установлена как активность газа Rn, находящегося в равновесии с 1 г Ra. В 1950 она была принята равной 3,7·1010 распадов в 1 с. Активность, отнесённую к массе образца, наз. массовой, к объёму - объёмной.

Для характеристики содержания трития Т в объектах внеш. среды используют т. н. тритиевую единицу ТЕ, она соответствует концентрации Т, при к-рой один его атом приходится на 1018 атомов водорода. В 1963 Национальное бюро стандартов США рекомендовало заменить термин "тритиевая единица" (ТЕ) термином "три-тиевое отношение" (ТО): 1 ТО = 1 ТЕ = 6,686·107 ат. Т·кг-1 = 3,193·10-12 Ки·кг-1 = 0,1181 Бк·кг-1 [це-зиевая единица (ЦБ) была принята для отношения активности 137Cs к массе К в организме, продуктах питания и т. д.; 1 ЦЕ = 37 Бк·кг-1 pКи·г-1].

Активность А находят, измеряя интенсивность излучений, сопровождающих распад, или определяя кол-во радиоакт. атомов в источнике. Напр., активность ''Тс в виде кусочка чистого металла определяют взвешиванием; активности 1 Бк соответствует число атомов Тс, равное 1,443 T1/2 ; активности 1 Ки соответствует 3,6·1023 атомов Тс и масса 59 г.

Измерения активности подразделяют на абс. и относительные (сравнение воздействия радионуклида, содержащегося в источнике, с аналогичным воздействием от эталонированного источника). Методы измерений различают по способу приготовления источника, геометрии измерений, виду излучения, типу детектора, используемому физ. эффекту, способам обработки информации, уровням измеряемых активностей.

По способу приготовления образца выделяют методы "бесконечно тонкого" и "бесконечно толстого" слоев, метод количеств. перевода радиоакт. "метки" в опре-дел. хим. формы для получения удобных для измерения жидкостей и газов и др. Метод "бесконечно тонкого" слоя основан на приготовлении источника с пренебрежимо малым поглощением излучения радионуклида в самом источнике. В случае "бесконечно толстого" слоя толщина радиоакт. слоя в источнике больше макс. пробега испускаемых частиц.

По геометрии измерений выделяют т. н. 4p-геомет-рию, промежуточную и измерения в малом телесном угле. В 4p-геометрии детектор окружает источник со всех сторон. Это осуществляется при помощи газоразрядных т. н. 4p-счётчиков или наполнением счётчика активным газом. Близкая к 4p геометрия осуществляется в жидкостных сцинтилляционных детекторах, ионизационных камерах, полупроводниковых и др. детекторах с каналами ("колодцами") для размещения источников. В случае низкой массовой активности источники размещают непосредственно на детекторе. Для снижения минимально детектируемой массовой активности детектор окружают контейнером с препаратом (Маринелли, 1950).

По используемому эффекту методы измерения активности подразделяются на ионизационные, газоразрядные, сцинтилляционные, калориметрич., масс-спектрометрич., фотометрич. и др. Название приборов содержит указание на метод измерения, геометрию и вид излучения, напр. 4p-Х-счётчик высокого давления (X - рентген), полупроводниковый детектор Ge(Li), сцинтилляционный детектор NaIl(Tl) и т. д.

По способам обработки информации от детекторов выделяют метод интегрального счёта, совпадений метод, позиционно-чувствит. методы и др. Интегральные методы применяют при измерении активности чистых радионуклидов или при относит. измерениях с помощью стандартных образцов. Спектрометрич. методы регистрируют как интенсивность излучения, так и его спектр; они позволяют селективно измерять активность отд. радионуклидов в их смесях. Методы совпадений и антисовпадений используют как для повышения селективности измерений радионуклидов, обладающих каскадным излучением, так и для абс. измерений. Если распад сопровождается каскадным испусканием двух излучений разного рода или разных энергий, в установку включают два детектора, настроенных на раздельную регистрацию этих излучений. При этом активность радионуклида находят с помощью выражения:

4023-18.jpg

где n1, п2 - скорости счёта от каждого детектора, n12 - скорость совпадений, функция B(n2/n12) : 1 при (n2/n1) : 1.

Позиционно-чувствительные системы применяют при хроматографич. анализе радиоакт. препаратов. Установки, включающие ЭВМ, со спец. детекторами позволяют находить распределения источников излучения на разных сечениях исследуемого объёма (эмис-сионная томография). Такие установки дают возможность изучать распределение в организме веществ, меченых g-излучающими радионуклидами (гамма-камеры).

Эффективность регистрации g-излучения. Отношение общего числа импульсов, поступающих от детектора (независимо от энергии, потерянной в его чувствит. объёме), к числу попаданий в детектор наз. полной счётной эффективностью. При работе с гамма-спектрометрами наиб. часто определяют сумму импульсов в пике полного поглощения. Т. к. осн. часть импульсов в цикле полного поглощения обычно связана с фотоэффектом, то говорят об фотоэффективности (см. Гамма-излучение).

Для сравнения детекторов используют относит. эффективность - отношение эффективностей регистрации данного детектора и сцинтилляционного детектора NaI(Tl) диам. и высотой 76,2 мм в пике полного поглощения при энергии g-излучения4023-19.jpg= 1332 кэВ (источник - 60Со) или 661,7 кэВ (137Cs). Напр., для полупроводникового детектора Ge(Li) с чувствит. объёмом 130 см3 относит. эффективность для фотонов с 4023-20.jpg = 1332 кэВ порядка 25%. Его энергетич. разрешение при этом в 50 раз лучше, чем у Nal(Tl).

Эффективность регистрации зависит от энергии g-из-лучения 4023-21.jpg(кривая эффективности). В спектрометрич. режиме наиб. важна кривая фотоэффективности. Её обычно измеряют, используя т. н. образцовые спектрометрич. g-источники с радионуклидами: 22Na, 54Mn, 57Со, 60Со, 65Zn, 88Y, 109Cd, 113Sn, 125I, 133Ba, 137Cs, 139Ce, 152Eu, 153Cd, 203Hg, 228Th, 241Am и др. Для таких источников с высокой точностью определены активности радионуклидов, кол-ва g-квантов в определ. спектральных линиях, испускаемые в 1 с в угле 4p. При исследовании внеш. среды, а также излучения человека используют образцовые объёмные источники, создаваемые часто на основе радиоакт. растворов.

В области энергии g-квантов 4023-22.jpg- 200-2500 кэВ зависимость эффективности регистрации F от4023-23.jpgописывается ф-лой:

4023-24.jpg

В частном случае полупроводникового детектора

4023-25.jpg

где а1, ..., a5 - численные коэффициенты. При замене одного детектора другим эффективность в пике полного поглощения 4023-26.jpg МэВ) определяется соотношением:

4023-27.jpg

где Vакт - активный объём детектора, а = 0,6246; b = -2,136. Для диапазона энергий4023-28.jpg~ 60-3050 кэВ при измерении в чашечках Петри и в сосудах Маринел-ли эффективность описывается ф-лой:

4023-29.jpg

Погрешности измерений. Потерн счёта h в установках обусловлены мёртвым временем установки и неизбежностью случайных совпадений. Мёртвым временем тм наз. время нечувствительности детектирующей системы вслед за попаданием в неё частицы (фотона). Мёртвое время может быть продлевающимся или фиксированным. В первом случае4023-30.jpg во втором 4023-31.jpg где h - скорость счёта.

Часто 4023-32.jpg= f(n), напр. 4023-33.jpg Параметры a0, a1 определяют экспериментально с короткоживущим радионуклидом, напр. 113MIn ( = 99,48 мин).

В пике полного поглощения4023-34.jpgg-квантов потери счёта могут вызываться одновременной регистрацией событий, произошедших в каскаде, и случайными совпадениями в пределах времени формирования сигнала. Величину h находят, измеряя спектры излучения при разных расстояниях источника от детектора.

Энергетическое разрешение. Мерой разрешающей способности спектрометрич. установки является полная ширина пика на половине высоты в распределении импульсов по энергии. Для сцинтилляционных детекторов её принято выражать величиной4023-35.jpg, для полупроводниковых -4023-36.jpg Для рентгеновского и g-излучения приводят 4023-37.jpg для энергий 4023-38.jpg - 5,9 кэВ, 122 кэВ и 1332 кэВ.

Чувствительность. Мин. детектируемая концентрация (МДК) радионуклида (в Бк·кг-1) в источнике определяется ф-лой

4023-39.jpg

Здесь М - масса пробы, К1 - коэф., учитывающий выход регистрируемого излучения на 1 акт распада радионуклида, К2 - эффективность регистрации, В - скорость счёта фона, t - время измерений.

Радиационная "значимость" радионуклидов. Для оценки радиац. воздействия разл. радионуклидов применяют два метода: оценивают вклад радионуклида в индивидуальную усреднённую годовую дозу из-лучения для критич. группы людей - лиц, находящихся в наихудших условиях с точки зрения радиац. воздействия (табл. 1); оценивают вклад этого радионуклида в популяционную дозу. За концентрацией отд. радионуклидов, дающих вклад в годовую дозу, на уровне 10 мкЗв устанавливается си-стематич. наблюдение. Проводится паспортизация состояния окружающей среды с последующим наблюдением за скоростью нарастания содержания радионуклидов.

Табл. 1. - Связь усреднённой годовой дозы, содержащейся в продуктах питания, с удельной активностью некоторых радионуклидов



Концентрация

радионуклидов,

ведущая к 10 мкЗв в 1 г

эквив. дозе (в критич.

группе), Бк/л, Бк/кг

Радионуклид

Объект



14С

Молоко

8


35S

- " -

20


90Sr+90Y

- " -

0,3


131I

- " -

0,4


134Cs

- " -

0,5


137Cs

- " -

0,5


60Co

Рыба

10


90Sr+90Y

- " -

3


134Cs

- " -

4


137Cs

- " -

5


60Co



Панцирные животные (раки,.черепахи и др.)

200






106Ru

- " -

200


137Cs

- " -

70



Фон. Для определения малых концентраций радионуклидов необходимо уменьшение радиационного фона, что достигается защитой. В табл.2 приведены осн. g-линии, встречающиеся в радиац. фоне, и указано снижение фона защитой (результат эксперимента), включающей слои Cd (толщиной 1 мм для защиты от нейтронов), Pb (10 см), Си (4 см) (см. Радиационная защита ).На установке, размещённой в соляной шахте на глуб. 305 м, был получен фон N = 1,7·103 импульсов на 1 кэВ на 1 см3 чувствит. объёма детектора за 1000 ч работы при энергиях g-квантов4023-41.jpg=2 МэВ. В случае т. н. активной защиты осн. детектор окружают неск. вспомогательными детекторами. Осн. и вспомогат. детекторы включают в схему антисовпадений. Активная защита в виде пластмассового сцинтиллятора толщиной - 10 см внутри свинцовой защиты толщиной 15 см, с низкофоновым полупроводниковым детектором Ge(Li) позволила получить фон Nф = 1,9·10-2 импульсов на 1 кэВ на 1 см3 чувствит. объёма детектора (4023-42.jpg= = 2 МэВ, t = 1000 ч).

Табл. 2.



Интенсив-

Снижение фона

4023-40.jpg КЭВ

Радионуклид

ность линии,

защитой, во сколь-



%

ко раз

238,59

212Pb

45

330

351,99

214Pb

36,7

2700

583,14

208Tl

30,96

630

609, 31

214Bi

46,9

3600

911,2

228Ac

27

6600

1001,2

234MPa

0,69

57

1120,29

214Вi

15,3

11000

1178,21

60Co

100

24

1238,11

214Bi

6,05

2000

1332,47

60Co

100

-

1460,75

40K

10,5

16000

1620,62

212Bi

1,43

1100

1764,5

214Bi

16,1

5600

2614,47

208Tl

36

1800

Литература по радиометрии

  1. Jackel В., Westmeier W., Patzelt P., "Nucl. Instrum. and Methods in Phys. Research", 1987, v. A 261;
  2. Van о E., Gonzalez L., Gaeta R. and Gonzalez Y. А., "Nucl. lustrum. and Methods in Phys. Research", 1975, v. 123;
  3. Сао Zhоng, "Nucl. Instrum. and Methods in Phys. Research", 1987, v. A 262;
  4. Sanchez-Reyes A. P., FebrianM. J., Barol. and Tejada J.,"Nucl. Instrum. and Methods in Phys. Research", 1987, v. В 28;
  5. Frу Р. A., o'Riоrdan М. С., "Nucl. Instrum. and Methods in Phys. Research", 1984, v. 223;
  6. Liguori C., Sarracino A., Sverzellti P. P. and Zanotti L., "Nucl. Instrum. and Methods in Phys. Research", 1983, v. 204.

В. А. Баженов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что электромагнитное и другие поля есть различные типы колебаний, деформаций и вариаций давления в эфире.

Понятие же "физического вакуума" в релятивистской квантовой теории поля подразумевает, что во-первых, он не имеет физической природы, в нем лишь виртуальные частицы у которых нет физической системы отсчета, это "фантомы", во-вторых, "физический вакуум" - это наинизшее состояние поля, "нуль-точка", что противоречит реальным фактам, так как, на самом деле, вся энергия материи содержится в эфире и нет иной энергии и иного носителя полей и вещества кроме самого эфира.

В отличие от лукавого понятия "физический вакуум", как бы совместимого с релятивизмом, понятие "эфир" подразумевает наличие базового уровня всей физической материи, имеющего как собственную систему отсчета (обнаруживаемую экспериментально, например, через фоновое космичекое излучение, - тепловое излучение самого эфира), так и являющимся носителем 100% энергии вселенной, а не "нуль-точкой" или "остаточными", "нулевыми колебаниями пространства". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 21.08.2019 - 14:24: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
19.08.2019 - 13:08: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
19.08.2019 - 13:00: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
19.08.2019 - 12:52: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
17.08.2019 - 18:50: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Тиртхи - Карим_Хайдаров.
15.08.2019 - 23:53: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
15.08.2019 - 23:52: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
15.08.2019 - 23:50: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА - Карим_Хайдаров.
15.08.2019 - 17:13: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМЫ ВНЕДРЕНИЯ НОВЫХ ТЕХНОЛОГИЙ - Карим_Хайдаров.
15.08.2019 - 16:22: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
15.08.2019 - 14:50: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Вихревые эффекты и вихревые теплогенераторы - Карим_Хайдаров.
09.08.2019 - 13:03: АСТРОФИЗИКА - Astrophysics -> Исследования комет - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution