к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Аэродинамика

Аэродинамика (от греч. аег - воздух и dynamis - сила) - раздел гидроаэромеханики, в к-ром изучаются законы движения воздушной (более общо - газообразной) среды и её силового взаимодействия с движущимися в ней твёрдыми телами, гл. обр. близкими по форме к используемым в авиации (крыло, удлинённое тело вращения и т. п.) и в ракетно-космич. технике (корпус ракеты, спускаемый аппарат и т. п.). Кроме собственно А. как общего раздела гидроаэромеханики, развились её нек-рые спец. прикладные области. Так, изучение движения самолёта в целом составило содержание А. самолёта, а отд. вопросы, потребовавшие углублённого рассмотрения движений самолёта и др. летат. аппаратов и их устойчивости, привели к появлению самостоят. отрасли - динамики полёта в атмосфере. Широкая область неавиац. применений А. получила наименование промышленной А. К ней обычно относят теорию и расчёт воздуходувок, ветровых двигателей, струйных аппаратов (напр., эжекторов) и др.

Обширную область совр. прикладной А. составляет А. лопаточных машин - насосов, компрессоров, турбин и А. реактивных двигателей. Изучение движения тел в сильно разреженной атмосфере (на больших высотах) вызвало появление нового раздела А.- динамики разреженных газов. Интенсивное изучение вопросов до- и сверхзвуковых движений воздуха и вообще газов привело к развитию самостоят. раздела гидроаэромеханики - газовой динамики. В А. как простейший её раздел входит аэростатика.

Теоретич. А. базируется на общих ур-ниях гидроаэромеханики. При этом для изучения сравнительно простых вопросов движения жидкости или газа вокруг тел и давления потока на них в А. довольствуются в первом приближении ур-ниями движения несжимаемой жидкости, т. е. ур-ниями гидродинамики (случай малых скоростей, точнее Маха чисел 111999-1.jpg ), и сжимаемой идеальной жидкости (случай больших скоростей, точнее чисел 111999-2.jpg). При рассмотрении более сложных вопросов - аэродинамического сопротивления и теплоотдачи тел, а также для изучения деталей движения вблизи поверхности тел и в "следу" за ними, в частности вопросов нарушения обтекаемости тел, в А. применяют ур-ния движения вязких жидкости и газа (Навье - Стокса уравнения).

Наличие в реальных жидкостях и газах внутр. трения (вязкости) вносит существ. поправки в А. идеальной жидкости. Возникает отсутствующее в идеальной жидкости сопротивление (см. Д-Аламбера - Эйлера парадокс); распределение давлений по поверхности обтекаемого тела, а следовательно, и подъёмная сила искажаются пограничным слоем, возникающим на поверхности тела из-за вязкости. При турбулентном режиме течения используются разл. ур-ния переноса импульса, энергии и напряжения, трактуемые в теории турбулентности. Наиб. трудности вызывает изучение и расчёт вихревых и отрывных течений.

Осн. значение среди разделов А. имеют теории крыла самолёта, винта гребного, самолёта и ротора (вертолёта), базирующиеся на общем учении о подъёмной силе крыла бесконечного размаха в плоско-параллельном потоке и крыла конечного размаха в пространственном потоке, а также на изучении явления интерференции (взаимодействия) частей самолёта: крыла и фюзеляжа, крыла и мотогондол, фюзеляжа и оперения и т. п. Особое значение в А. самолёта имеют проблемы нестационарного течения, вибраций крыла и оперения (см. Аэроупругость). Большие скорости полёта приводят к значит. усложнению всех этих явлений и требуют углубления теоретич. методов и значит. развития эксперим. техники. Развитие ЭВМ и ряда разделов вычислит. математики позволило решить мн. задачи теоретич. и прикладной А. численными методами.

Для определения численных значений коэфф. сил и моментов, действующих на тело со стороны воздушного потока, проводят аэродинамический эксперимент, для чего используются аэродинамические трубы., в к-рых подвергаются обдувке модели частей самолётов и др. летат. аппаратов.

Литература по аэродинамике

  1. Фабрикант H. Я., Аэродинамика, M., 1964;
  2. Краснов H. Ф., Аэродинамика, ч. 1-2, 3 изд., M., 1980;
  3. Гинзбург И. П., Аэрогазодинамика. (Краткий курс), M., 1966;
  4. Горлин С. M., Экспериментальная аэромеханика, M., 1970. Л. Г.

Лойцянский

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 03.12.2019 - 22:04: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Марины Мелиховой - Карим_Хайдаров.
03.12.2019 - 11:12: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
30.11.2019 - 19:55: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
30.11.2019 - 18:13: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.11.2019 - 08:14: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Декларация Академической Свободы - Карим_Хайдаров.
27.11.2019 - 08:31: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> КОМПЬЮТЕРНО-СЕТЕВАЯ БЕЗОПАСНОСТЬ ДЛЯ ВСЕХ - Карим_Хайдаров.
27.11.2019 - 08:30: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
27.11.2019 - 08:27: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА - Карим_Хайдаров.
23.11.2019 - 12:17: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
19.11.2019 - 09:07: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Маклакова - Карим_Хайдаров.
18.11.2019 - 19:10: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution