к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Рентгеновская топография

Рентгеновская топография - совокупность методов получения изображений дефектов в кристаллах при помощи дифракции рентг. лучей. Во всех методах рентгеновской топографии рентг. пучок от источника направляют на кристалл так, чтобы для всего кристалла или его части выполнялось Брэгга - Вульфа условие; возникающие при этом дифрагиров. пучки (иногда и прошедший пучок) регистрируются фотопластинкой; зафиксиров. изображение наз. рентг. топограммой.

Процесс дифракции рентг. волны в искажённом дефектами кристалле рассматривается в разл. приближениях кинематич. и динамич. теорией (см. Дифракция рентгеновских лучей ).В обоих случаях влияние искажений атомной структуры на дифракцию описывается параметром локального отклонения положения атомных плоскостей кристалла от брэгговского: 4043-18.jpg где q - угол Брэгга, первое слагаемое учитывает локальное изменение dd межплоскостного расстояния d для отражающих атомных плоскостей, второе - их локальный угол поворота dq. Интенсивность дифрагированного и прошедшего пучков на поверхности выхода из кристалла определяется значениями этого параметра в объёме кристалла, где происходит дифракция рентг. волн. Т. о., распределение интенсивности регистрируемых пучков отображает отклонения строения кристаллич. структуры от идеальной, т. е. рентг. топограмма содержит информацию об искажениях структуры (дефектах). В зависимости от применяемого метода съёмки на топограмме видны границы блоков, единичные дислокации, включения, дефекты упаковки, магн. домены, неоднородности распределения примеси, границы окисных плёнок на поверхностях кристаллов и изделий из них, а также искажения, вызванные внеш. полями (напр., температурными, акустическими и т. п.). Анализ дифракц. контраста (распределения интенсивности) изображений дефектов проводится на основе динамич. теории рассеяния рентг. лучей и позволяет определять нек-рые качественные (знак избыточного объёма включений, направление вектора Бюргерса дислокаций), а в нек-рых случаях и количественные характеристики дефектов (величину деформации, величину вектора Бюргерса дислокаций и пр.).

Как правило, в рентгеновской топографии используется только двухвол-новая дифракция, когда для каждого пучка излучения с длиной волны l условие Брэгга - Вульфа выполняется только для одной системы отражающих плоскостей и возникает только один дифрагиров. пучок. В соответствии с ф-лой Брэгга расходимость дифрагиров. пучка4043-19.jpgв плоскости рассеяния связана с его спектральной шириной 4043-20.jpg соотношением

4043-21.jpg

Если расходимость падающего на кристалл пучка велика, т. е.

4043-22.jpg

(dli - спектральная ширина падающего на кристалл пучка), то dqd лимитируется спектральной шириной падающего на кристалл излучения в соответствии с соотношением (1); обычно этот случай реализуется при съёмке в монохроматическом (напр., характеристическом) излучении. Расходимость падающей волны определяется как

4043-23.jpg

где dx - размер источника в плоскости рассеяния, l - расстояние от источника до кристалла. Напр., при К - коллиматор; съёмка производится при одновременном отражении излучения от разных семейств атомных плоскостей кристалла Кр. Схема Фудживара аналогична схеме съёмки лауэграмм ,но в ней используется сильно расходящийся пучок, изучается распределение интенсивности излучения в каждом дифракционном пятне.


Рис. 1. Схема съемки рентгеновских топограмм по методу Шульца для исследования блочных кристаллов Кр; И - точечный источник непрерывного спектра. Повороты блоков приводят к смещению их изображения на фотопластинке Ф.

4043-24.jpg




Рис. 2. Схема съёмки топограмм по методу Берга - Баррета для наблюдения дефектов в тонких приповерхностных слоях кристалла: И - источник монохроматического излучения; К - коллиматор; Кр - кристалл; излучение падает на кристалл под скользящим углом (1-5°).

4043-25.jpg



Рис. 3. Схема съёмки топограмм по методу Фудживара для наблюдения блочное™ монокристаллов; И - микрофокусный источник излучения непрерывного спектра;

4043-26.jpg


Рис. 4. Схема съемки топограмм по методу Бормана. В результате эффекта Бормана при выполнении условий Брэгга - Вульфа коэффициент поглощения идеального кристалла Кр уменьшается на два порядка. Дефекты, для к-рых не выполняется условие Брэгга - Вульфа, поглощают излучение источника И, что приводит к их изображению на фотопластинке Ф.

4043-27.jpg



Рис. 5. Схема съёмки топограмм по методу Ланга для наблюдения дефектов в высокосовершенных полупроводниковых монокристаллах.

4043-28.jpg


Используется характеристическое излучение Кa1 от микрофокусного источника И, которое коллимируется коллиматором К1 так, чтобы условие Брэгга - Вульфа выполнялось для излучения Кa1 и не выполнялось для излучения Кa2. Фотоплёнку Ф сканируют синхронно с кристаллом Кр для получения изображения дефектов по всей длине кристалла.

Рис. 6. Схема метода плосковолновой топографии для наблюдения дефектов с особо слабыми полями искажений (от микродефектов - кластеров, дислокационных микропетель размером 1 мкм и т. д.).

4043-29.jpg


Отражение от кристаллов К, и К2 используется для получения высокой коллимации пучка (с расходимостью 0,1-0,01'') монохроматического излучения. Кристалл Кр удерживают в определённом отражающем положении в течение десятков часов.

съёмке в излучении непрерывного спектра и при использовании микрофокусного источника часто справедливо обратное соотношение

4043-30.jpg

В этом случае4043-31.jpg а4043-32.jpgдаётся соотношением (1).

Пространственное разрешение на топограмме в плоскости рассеяния определяется геом. и дифракц. ушире-ниями. Геом. уширеиие 4043-33.jpg где l1 - расстояние от кристалла до фотопластинки, dqd определяется по ф-ле (2) или (3). Дифракц. уширение описывается динамич. теорией дифракции рентг. лучей и может быть оценено как 4043-34.jpgгде 4043-35.jpg- длина экстинкции, 4043-36.jpg- фурье-компонента поляризуемости рентгеновской, соответствующая атомным плоскостям с индексами Миллера (hkl) и коэф. С = cos2q или 1 (для поляризации в плоскости рассеяния и в перпендикулярной ей плоскости соответственно).

4043-37.jpg

Рис. 7. Топограммы монокристалла Si, полученные с помощью синхротронного излучения. Толщина кристалла 0,35 мм, энергия электронов 7,2 ГэВ, ток в кольце 7 мА, время экспозиции 40 с.

4043-38.jpg

Рис. 8. Топограмма монокристалла Si, полученная методом Ланга. Тонкие чёрные линии - единичные дислокации, тёмные участки - скопления дислокаций, параллельные полосы вдоль краёв кристаллов - экстинкционные контуры или полосы равной толщины.


Разрешение в направлении, перпендикулярном плоскости рассеяния, определяется геом. уширением, к-рое может быть уменьшено путём оптимизации схемы съёмки. Принципиальный предел разрешения рентгеновской топографии обусловливает дифракц. уширение. Разрешение лимитируется также разрешающей способностью фотопластинок, к-рая не превышает обычно 300-500 линий/мм. Суммарное действие всех факторов на практике позволяет получать на рентг. топограммах изображение с разрешением ~ 3-5 мкм.

4043-39.jpg

Рис. 9. Топограммы одного и того же кристалла Si, снятые по методу Ланга в двух взаимно перпендикулярных направлениях. Отражение (220), излучение Си Кa1, время экспозиции каждой топограммы 5 ч: a - отражающая поверхность с индексами Миллера (НО), тонкие вертикальные чёрные линии - дислокации, горизонтальные полосы - слои с неоднородно распределённой примесью, возникшие вследствие колебаний концентрации примеси в расплаве за фронтом кристаллизации при выращивании кристалла (полосы роста); б - отражающая поверхность с индексами Миллера (001), изображения тех же дислокаций, что и на рис. а, но ориентированных вдоль распространения пучка.

4043-40.jpg

Рис. 10. Изображение магнитных доменов монокристалла желе-зоиттриевого граната на рентгеновской топограмме, снятой по методу Ланга. Толщина кристалла 180 мкм, излучение Ag 4043-41.jpg , отражение (800), время экспозиции 60 ч.

4044-1.jpg

Рис. 11. Топограмма фрагмента интегральной микросхемы из монокристалла Si.

Все методы рентгеновской топографии дают изображение в масштабе, равном или близком 1:1, увеличенное изображение получают оптич. увеличением топограмм. Методы рентгеновской топографии применимы для исследования почти совершенных кристаллов, т. е. кристаллов с относительно низкой плотностью дефектов. Допустимая плотность дефектов зависит от применяемой схемы съёмки (рис. 1-6) и лимитируется разрешением; напр., для съёмки по методу Ланга (рис. 5) плотность дислокаций не должна превышать 104 см-1. На рис. 7-11 приведены примеры рентг. топограмм с изображением нек-рых дефектов кристаллич. структуры. Преимущества рентгеновской топографии перед обычной оптич. микроскопией - возможность изучать дефекты структуры непрозрачных для видимого света кристаллов, высокая чувствительность, позволяющая регистрировать относит. изменения dd (до 10-6) и dq (до 0,1''). Ррентгеновская топография существенно уступает просвечивающей электронной микроскопии в разрешении, но является неразрушающим методом исследования и контроля и применима для изучения структуры относительно толстых кристаллов - толщиной от ~ 1 мм в методе Ланга до неск. см в методе Бормана, основанном на аномального пропускания эффекте .Осн. область применения рентгеновской топографии - исследование и контроль качества высокосовершенных монокристаллов полупроводников и изделий из них. Недостатки рентгеновской топографии - относительно низкое разрешение, большая продолжительность съёмки (от неск. до десятков часов). Для сокращения съёмки применяются мощные источники рентг. излучения - аппараты с вращающимся анодом и синхротроны, для регистрации - системы визуализации рентг. изображения, в частности рент-генооптич. преобразователи-усилители яркости и рент-генотелевиз. системы, позволяющие проводить наблюдения в режиме реального времени.

Литература по рентгеновской топографии

  1. Berg W., History of load of deformed crystals, "Z. Kristallogr.", 1934, v. 89, №3/4, p. 286;
  2. Barrett C. S., New microscopy and its potentiality, "Trans. Amer. Inst. Min. and Metal. Eng.", 1945, v. 161, p. 15;
  3. Shultz L. G., Method of using a fine focus X-ray tube - for examing the surface of single crystals, там же, 1954, v. 200, p. 1082;
  4. Borrmann G., Hildebrandt G., Rontgen-Wellenfelder in grossen Kalkspat-kristallen und die Wirkung einer Deformation, "Z. Naturf.", 1956, Bd 112, H. 7, S. 585;
  5. Воnse U., Zur rontgenographischen Be-stimmung des Types einzelner Versetzungen in Einkristallen, "Z. Phys.", 1958, Bd 153, H. 3, S. 278;
  6. Lang A. R., The projection topograph: a new method in X-ray diffraction microradiography, "Acta Crystallogr.", 1959, v. 12, p. 249;
  7. Fujiwarа Т., New method to taking X-ray radiographs the divergent X-ray method, "Mem. Defense Academy", 1963, v. 2, М 5, p. 127;
  8. Инден6ом В Л., Чуховский F. H., Проблема изображения в рентгеновской оптике, "УФН", 1972, т. 107, в. 2, с. 229;
  9. Каули Д., Физика дифракции, пер. с англ., М., 1979;
  10. Computer controlled X-ray topographic imaging system, "The Rigaku Journal", 1984, v. 1, № 1, p. 23;
  11. Дифракционные и микроскопические методы в материаловедении, пер. с англ., М., 1984;
  12. Ингал В. Н., Гаврилова Л. А., Опыт применения рентгенотелевизионной топографической установки для наблюдения изображений дефектов кристаллов в условиях аномального прохождения рентгеновских лучей, "Зав. лаборатория", 1987, т. 53, № 9, с. 60.

В. И. Кушнир, Э. В. Суворов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

ПУТИН : РОССИЯ = 5 : 0

Мало ли что я обещал гоям?
Российскую пенсию будут получать только израильтяне!


ГОЛОСОВАТЬ ПРОТИВ ПОВЫШЕНИЯ ВОЗРАСТА ВЫХОДА НА ПЕНСИЮ

Константин Сивков: Власть подготовила революционную ситуацию в РФ

ВСЕ ВИДЕО
Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
  19.06.2018 - 11:12: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
19.06.2018 - 01:53: Беседка - Chatter -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
17.06.2018 - 17:14: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Фурсова - Карим_Хайдаров.
16.06.2018 - 08:05: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
15.06.2018 - 16:59: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМА ПРЕСНОЙ ВОДЫ - Карим_Хайдаров.
14.06.2018 - 23:48: СОВЕСТЬ - Conscience -> Пресса против Эйнштейна: первые ростки - Карим_Хайдаров.
14.06.2018 - 23:44: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Маклакова - Карим_Хайдаров.
14.06.2018 - 23:02: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
14.06.2018 - 08:21: АСТРОФИЗИКА - Astrophysics -> АСТРОФИЗИКА ДЛЯ ВСЕХ - Карим_Хайдаров.
13.06.2018 - 19:08: Беседка - Chatter -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
13.06.2018 - 18:25: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> ПОПУЛЯРИЗАЦИЯ НАУКИ - Карим_Хайдаров.
13.06.2018 - 17:00: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> БИОТРАНСМУТАЦИЯ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution