к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Ориентационные фазовые переходы

Ориентационные фазовые переходы - (спин-переориентационные переходы) - особый класс магнитных фазовых переходов, при к-рых меняется ориентация осей лёгкого намагничивания магнетиков при изменении внеш. параметров (температуры, магн. поля). Эти фазовые переходы происходят между магнитоупорядоченными фазами магнетика и относятся к т. н. переходам типа порядок - порядок. При О. ф. и. перестраивается магнитная атомная структура и изменяется магнитная симметрия кристаллов. О. ф. и., происходящие при изменении температуры, наз. спонтанными переходами, при изменении внеш. магн. поля - индуцированными переходами.
Простейшим примером спонтанного О. ф. п. является наблюдаемая в ряде магн. кристаллов переориентация спинов (спиновых магн. моментов) от одной кристаллографич. оси к другой при изменении температуры. Такие переходы наблюдаются, напр., в классич. ферромагнесике кобальте, в гадолинии, в интерметаллических соединениях RCo5 (где R - Nd, Pr, Dy, Tb), ферримагнетиках Mn2Sb и Ba2Co2Fe12О22 и в целом ряде редкоземельных магнптоупорядоченных кристаллов [1]. Спонтанная переориентация магн. моментов обусловлена в них температурной зависимостью энергии магнитной анизотропии.
В том случае, когда переориентация моментов осуществляется в нек-рой кристаллографич. плоскости кристалла, изменение термодинамич. потенциала Ф кристалла удобно представить в виде

15024-5.jpg

где К1 и К2 - константы анизотропии, изменение к-рых с температурой и приводит к О. ф. п.;15024-6.jpg - угол ориентации оси лёгкого намагничивания относительно кристаллография, осей в плоскости переориентации. Минимизация (1) по углу15024-7.jpgприводит к трём возможным состояниям системы (вблизи от О. ф. п. К2 считают не зависящей от температуры):

15024-8.jpg

15024-9.jpg

15024-10.jpg

Если К1 знакопеременна, а К2 > 0 в рассматриваемой области температур, то в кристалле могут существовать коллинеарные фазы I и II и угл. фаза III. Темп-ры Т1 [при к-рой К1(T1) + 2К2 = 0] и Т2 [при к-рой К12) = 0] есть точки О. ф. п. II15024-11.jpgIII и I15024-12.jpgIII соответственно. На рис. 1 приведены в качестве примеров температурные зависимости констант К1 и К2 гексагональных интерметаллич. соединений NdCo5 и РгСо5, на рис. 2 показаны температурные зависимости угла отклонения намагниченности от гексагональной оси для этих соединений. Переходы между фазами I15024-13.jpg111 и III15024-14.jpgII, возникающие при инверсии знака константы анизотропии К1, являются типичными примерами фазовых переходов, описываемых квантовой теорией [2].

15024-15.jpg

Рис. 1. Температурные зависимости констант анизотропии для NdCo5 (пунктир) и РrСо5 (сплошная линия).

Действительно, в случае, напр., перехода I15024-16.jpgIII, разложение термодинамич. потенциала (1) в ряд по15024-17.jpg [зависимость К1(Т) в рассматриваемой области температур предполагается линейной]:

15024-19.jpg

где15024-20.jpg(Т) = 2К1(Т) = 2К(Т - Т2)/Т2, К- константа,15024-21.jpg = 4К2,15024-22.jpg Угол15024-23.jpg здесь играет роль параметра порядка.

15024-18.jpg

Рис. 2. Температурные зависимости ориентации осей лёгкого намагничивания для NdCo5 и РrСо5.

Такую же форму принимает термодинамич. потенциал вблизи точки Т = Т1 при15024-24.jpg (либо15024-25.jpg). Т. о., переориентация магн. моментов, описываемая термодинамич. потенциалом (1), при К2 > 0 происходит непрерывно, путём двух фазовых переходов 2-го рода при темп-pax Т1 и Т2. Параметр15024-26.jpg (параметр порядка) меняется при этом непрерывно, а производная15024-27.jpg имеет разрывы на концах области переориентации (рис. 3,а). Очевидно, что вблизи температур Т1 и Т2, при к-рых происходят фазовые переходы 2-го рода, должны наблюдаться характерные особенности в поведении ряда термодинамич. величин: теплоёмкости, модуля Юнга и т. п., а также расходимость восприимчивости (описывающей отклик параметра порядка на термодинамически сопряжённое ему поле), обращение в нуль частоты колебаний параметра порядка (мягкая мода), замедление его релаксации и т. д. Такие аномалии в окрестности точки О. ф. п. действительно наблюдались, напр., в редкоземельных магнетиках [1]. При непрерывной переориентации магн. моментов угл. фаза III играет роль "буфера". Она позволяет магн. моментам непрерывно переходить из фазы I в фазу II. О. ф. п. относятся к переходам, для которых квантовая теория является очень хорошим приближением, т. к. флуктуации параметра порядка в критич. состоянии здесь можно не учитывать, поскольку они проявляются в очень узкой области температур (15024-30.jpgТ ~ 10-6 - 10-8K) вблизи точки перехода.

15024-28.jpg

Рис. 3. Температурная зависимость угла15024-29.jpg при ориентационном фазовом переходе: а - К2 > 0; б - К2 < 0.

При К2 < 0 фаза III является неустойчивой и температурные области существования фаз I и И перекрываются. С точки зрения симметрии, непосредств. непрерывный переход I15024-31.jpgII невозможен, т. к. для непрерывного перехода необходимо, чтобы группа магн. симметрии одной из фаз, участвующей в переходе, была подгруппой симметрии другой фазы, что для фаз I и II не выполняется. Следовательно, непосредств. переход I15024-32.jpgII может осуществляться только скачкообразно (фазовый переход 1-го рода) при Т = Тс, где Тс определяется условиями равенства термодинамич. потенциалов обеих фаз: Ф(15024-33.jpg = 0) = Ф(15024-34.jpg ), т. е. K1(Tc) + K2 = 0. Темп-ры Т1 и Т2, определяемые ур-ниями К12) = 0 и K1(T1)+ 2 = 0, есть границы областей существования метастабильных фаз (в предположении, что переход I15024-35.jpgII происходит однородно по образцу). Разложение Ф по15024-36.jpg (либо15024-37.jpg приводит к выражению (2), где15024-38.jpg = 4К2 < 0, что, согласно квантовой теории, является признаком фазового перехода 1-го рода. На рис. 3(б) изображена зависимость15024-39.jpg(Т)для этого случая.
Внеш. магн. поле Нвн оказывает существ. влияние на О. ф. п., подавляя их или, наоборот, способствуя их возникновению. Поле Нвн может также индуцировать О. ф. п. Напр., в целом ряде антиферромагнетиков при достаточно большом (критическом) значении магн. поля Нс, приложенного вдоль оси антиферромагнетизма, происходит переориентация спинов, и намагниченность магн. подрешёток устанавливается перпендикулярно направлению действующего магн. поля [3] (см. Спин-флоп переход). Индуцированные полем О. ф. п. наблюдались также в слабых ферромагнетиках, в частности в редкоземельных ортоферритах, для к-рых были исследованы разнообразные фазовые диаграммы Нс- Т [1].

Литература по ориентационным фазовым переходам

  1. Орнентационные переходы в редкоземельных магнетиках, М., 1979;
  2. Боровик-Романов А. С., Антиферромагнетизм, в кн.: Итоги науки. Сер. физ-мат. науки, в. 4, М., 1962.

А. М. Кадомцева

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution