к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Основное кинетическое уравнение

Кинетическое уравнение основное - ур-ние для вероятности распределения квантовой системы по квантовым состояниям. Установлено В. Паули (W. Pauli) в 1928. К. у. о. является квантовым кинетич. ур-нием, иногда его наз. "управляющим ур-нием" (master equation) или ур-нием Паули, из него можно вывести кинетическое уравнение Болъцмана.

К. у. о. для вероятности Рп квантового состояния п имеет вид

2505-63.jpg

где 2505-64.jpg - вероятность перехода системы из квантового состояния т в состояние п в единицу времени под влиянием не зависящего от времени возмущения. Индексы п, т соответствуют квантовым стационарным состояниям гамильтониана свободных частиц Н0, т. е. многочастичным состояниям. Вероятность Рп равна диагональному элементу матрицы плотности rnn. К. у. о. описывает необратимый процесс приближения к статистич. равновесию систем со мн. степенями свободы. Обычно предполагают, что оно вызывается возмущающим членом 2505-65.jpg в гамильтониане2505-66.jpg (2505-67.jpg - параметр взаимодействия). Внеш. поля предполагаются отсутствующими, возмущение считается малым. К. у. о. выводится из Лиувилля уравнения для матрицы плотности во втором приближении теории возмущений. Для изолиров. систем вероятность прямого перехода равна вероятности обратного перехода:

2505-68.jpg

Для дискретных т, п 2505-69.jpg-функция переходит в символ Кро-некера.

Если динамич. подсистема взаимодействует с системой с большим числом степеней свободы, находящейся в состоянии статистич. равновесия (термостатом), то для получения вероятности распределения состояний в динамич. подсистеме нужно просуммировать распределение вероятностей в полной системе (удовлетворяющее К. у. о.) по квантовым состояниям термостата. В этом случае вероятность распределения по состояниям динамич. подсистемы также удовлетворяет К. у. о., но вероятность прямого перехода уже не равна вероятности обратного перехода, а удовлетворяет детального равновесия принципу:

2505-70.jpg

Т - абс. температура, т, п определяют теперь квантовые состояния динамич. подсистемы, соотв. уровням энергии 2505-71.jpg . Наиболее простую форму имеет К. у. о. для одночастичных квантовых уровней системы. Тогда числа заполнения уровней nk удовлетворяют ур-нию

2505-72.jpg

2505-73.jpg - вероятность перехода в единицу времени между одночастичными уровнями.

К. у. о. позволяет ввести энтропию неравновесного квантового состояния: , к-рая монотонно возрастает, стремясь 2505-74.jpg к равновесной при 2505-75.jpg, т. е. удовлетворяет квантовой Я-теореме Больцмана.

При выводе К. у. о. Паули использовал предположение о хаотичности фаз квантовых состояний (гипотеза молекулярного хаоса) в любой момент времени. Затем Л. Ван Хов (L. Van Hove) показал, что достаточно предположить случайность фаз лишь для нач. момента времени. Для вывода К. у. о. существенны макроскопич. размеры системы, т. е. наличие большого числа степеней свободы. Математически это выражается предельным переходом, при к-ром объём системы стремится к бесконечности (при фиксиров. отношении объёма к числу частиц) и приводит к возникновению т. н. диагональных сингулярностей в матричных элементах энергии возмущения. Строгий вывод К. у. о. возможен в пределе 2505-76.jpg , 2505-77.jpg при 2505-78.jpg. Наиболее прост вывод К. у. о. с помощью метода проекционных операторов.

В общем случае вероятность Pn(t)зависит от предшествующей истории (эффект памяти) и К. у. о. имеет вид

2505-79.jpg

где 2505-80.jpg - функция памяти. Для непрерывно распределённых случайных переменных х К. у. о. для плотности вероятности W(x, t)имеет форму интегрального ур-ния 2505-81.jpg2505-82.jpg - плотность вероятности перехода 2505-83.jpg ].

Метод К. у. о. применяется в теории магн. резонанса, квантовой радиофизике и квантовой оптике.

Литература по основному кинетическому уравнению

  1. Ван Xов Л., Квантовомеханические возмущения и кинетическое уравнение, в сб.: Вопросы квантовой теории необратимых процессов, пер. с англ., М., 1961;
  2. Файн В. М., Ханин Я. И., Квантовая радиофизика, М., 1965, гл. 2;
  3. Честер Дж., Теория необратимых процессов, пер. с англ., М., 1966;
  4. Паули В., Труды по квантовой теории, [пер. с нем.], М., 1975, с. 661;
  5. Зубарев Д. Н., Современные методы теории неравновесных процессов; в кн.: Итоги науки и техники. Сер. Современные проблемы математики, т. 15, М, 1980.

Д. Н. Зубарев

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution