к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Квантовая жидкость

Квантовая жидкость - жидкость, на свойства к-рой существ. влияние оказывают квантовые эффекты в поведении составляющих её частиц. Квантовые эффекты становятся существенными при очень низких темп-pax, когда волна де Бройля частиц, отвечающая их тепловому движению, становится сравнимой с расстоянием между ними и происходит квантовое вырождение жидкости. С понижением температуры роль квантовых эффектов увеличивается, и при достаточно низкой температуре любая жидкость должна была бы стать квантовой. Однако подавляющее большинство обычных жидкостей затвердевает раньше, чем квантовые эффекты начинают проявляться сколько-нибудь заметно. Поэтому фактически в прямом лаб. эксперименте приходится иметь дело с двумя К. ж.- изотопами гелия: жидким 4Не и жидким 3Не (а также с их смесями) при темп-pax ~ 1-2 К. К. ж., по-видимому, образуют нейтроны в нейтронных звёздах. В определ. смысле К. ж. составляют электроны в металлах и полупроводниках и экситоны в экситонных каплях в диэлектриках, а также протоны и нейтроны в атомных ядрах. К. ж. классифицируют по статистике составляющих их частиц. Жидкость, состоящая из частиц с целым спином, бозонов (жидкий 4Не), наз. бозе-жидкостью, а из частиц с полуцелым спином, фермионов (жидкий 3Не),- ферми-жидкостью.

Элементарные возбуждения

Квантовые эффекты особенно ярко проявляются при низких темп-pax, когда жидкость находится в слабовозбуждённых состояниях, близких к основному квантовому состоянию. Выявление свойств таких состояний - осн. задача теории К. ж. Важнейшее положение этой теории состоит в том, что переход пространственно-однородной К. ж. из осн. состояния в слабовозбуждённое можно описать как появление в ней газа квазичастиц, или элементарных возбуждений, каждое из к-рых обладает определёнными импульсом и энергией. Энергия квазичастицы e определяется её импульсом р. Зависимость e(р)- закон дисперсии квазичастиц - является важнейшей характеристикой К. ж. Всякое слабовозбуждённое состояние жидкости характеризуется распределением квазичастиц по импульсам. Кроме импульса состояние квазичастицы в изотропной К. ж. характеризуется спиральностью - проекцией угл. момента на направление импульса. Квазичастицы, отличающиеся знаком спиральности, в жидкости, инвариантной относительно пространственной инверсии, имеют одну и ту же энергию, т. е. состояния квазичастиц с отличной от нуля спиральностью двукратно вырождены. Как и обычные частицы, квазичастицы подчиняются определ. статистике- Бозе - Эйнштейна статистике или Ферми - Дирака статистике. Квазичастицы с целой (включая нуль) спиральностью являются бозонами, с полуцелой - фермионами. При этом поскольку проекция угл. момента жидкости может меняться лишь на целое число (в единицах h), фермиевские квазичастицы могут появляться и исчезать лишь парами квазичастица-дырка (аналогичными в известном смысле электрон-позитронным парам), а бозевские - поодиночке. В бозе-жидкости все квазичастицы являются бозонами, тогда как среди частиц ферми-жидкости могут быть как фермиевские, так и бозевские ветви. В состоянии термодинамич. равновесия квазичастицы фермиевского и бозевского типов распределены по импульсам согласно функциям распределения идеальных (соответственно) ферми- и бозе-газов. Описание возбуждённых состояний жидкости на языке квазичастиц является приближённым. Это проявляется в конечности времени жизни квазичастиц, обусловленной их взаимодействием. При отличных от абс. нуля темп-pax затухание квазичастиц связано с процессами их взаимного рассеяния и распада. При температуре абс. нуля рассеяние отсутствует и затухание квазичастицы связано только с процессами распада; если в том или ином интервале импульсов они запрещены законами сохранения, квазичастица является строго незатухающей.

Ферми-жидкость

Нормальная (несверхтекучая) фермиевская жидкость имеет спектр квазичастиц, аналогичный спектру идеального ферми-газа. Его естественно описывать, считая, что при температуре абс. нуля квазичастицы заполняют в импульсном пространстве все квантовые состояния вплоть до нек-рого фермиевского импульса pF. Рождение пары квазичастица (с импульсом р) - дырка (с импульсом р') описывается в этой картине как переход квазичастицы с импульсом -р', первоначально находившейся внутри фермиевской сферы, в состояние с импульсом р вне этой сферы. Т. о., квазичастицы могут иметь импульсы p>pF, a дырки p<pF. Важнейшее положение теории ферми-жидкости состоит в том, что определяющий распределение квазичастиц фермиевский импульс рF связан с плотностью числа реальных частиц (атомов жидкости) N/V тем же соотношением, что и в идеальном ферми-газе:

pF = h(3p2)1/3(N/V)1/3 (1)

(N - число частиц, V - объём системы). В этом смысле число квазичастиц в ферми-жидкости равно числу реальных частиц жидкости. Энергия E ферми-жидкости является функционалом от функции распределения квазичастиц п(р); её изменение при изменении п(р)определяет энергию квазичастицы e(р):
265_284-23.jpg
(здесь и далее предполагается, что распределение квазичастиц не зависит от их спиновых состояний, и опускаются спиновые индексы у всех величин). Важное отличие ферми-жидкости от идеального ферми-газа состоит в том, что энергия квазичастицы e(p) зависит от распределения всех остальных квазичастиц. Изменение e(р) при малом изменении п(р)имеет вид
265_284-24.jpg

функция f(p, р') описывает взаимодействие между квазичастицами. Фермиевский импульс рF связан с химическим потенциалом m жидкости равенством:

e(pF) = eF = m (4)

(eF - ферми-энергия). В окрестности фермиевского импульса

e(р) ~ m + vF(p-рF), (5)

где vF - скорость квазичастиц на фермиевской сфере. Отношение m*=pF/vF наз. эффективной массой квазичастицы. Ввиду равенства числа частиц числу квазичастиц плотность импульса последних, делённая на массу частицы т, должна быть равна потоку их числа, что приводит к соотношению
265_284-25.jpg
варьирование к-рого по п даёт связь эфф. массы с функцией взаимодействия f:
265_284-26.jpg
Здесь функция f(p, р') берётся при |p|=|p'|=pF, и поэтому она зависит лишь от угла q между р и р', do'=2p sin qdq - элемент телесного угла в направлении р'. Аналогично можно получить связь функции f с сжимаемостью жидкости:
265_284-27.jpg
(r=mN/V - плотность жидкости, Р - давление). Энтропия жидкости выражается через функцию распределения квазичастиц той же ф-лой, что и для идеального ферми-газа:
265_284-28.jpg
Распределение же квазичастиц по импульсам в состоянии термодинамич. равновесия даётся обычной ф-лой распределения Ферми - Дирака (используется система единиц, в к-рой темп-pa Т выражается в энергетич. единицах, т. е. в к-рой k=1):
265_284-29.jpg
Это приводит к линейному по температуре закону теплоёмкости ферми-жидкосги:
265_284-30.jpg
Время жизни квазичастиц в ферми-жидкости определяется процессами их рассеяния. При абс. нуле температур они сводятся к рождению пар частица-дырка, причём вероятность такого рассеяния (с учётом принципа Паули) для квазичастицы с импульсом р пропорц. (р-рF)2. Поэтому реальный физ. смысл имеют лишь квазичастицы вблизи поверхности Ферми, где эта вероятность мала. Аналогично ср. длина пробега квазичастиц при конечных темп-pax l ~ Т-2, так что фермиевская жидкость при низких темп-pax в кинетич. отношении ведёт себя как разреж. газ и должна описываться кинетическим уравнением. Теплопроводность ( и вязкость h ферми-жидкости с понижением температуры изменяются след. образом:

(~T-1, h~T-2. (10)

Соответственно с понижением температуры возрастает затухание звука, так что при Т=0 распространение обычного звука невозможно. Возможно, однако, распространение колебаний особого рода - нулевого звука, в к-ром происходит сложная деформация функции распределения квазичастиц. Закон дисперсии этих колебаний, как и у обычного звука, линейный: w=u0k (где w - частота колебаний, k - волновое число), но скорость их распространения и0 не выражается непосредственно через сжимаемость (8), а требует для своего определения решения кинетич. ур-ния. Затухание нулевого звука пропорц. большей из величин (hw)2 и Т2 и при низких темп-pax мало. Нулевой звук представляет собой бозевскую ветвь спектра возбуждений ферми-жидкости. От распределения по импульсам квазичастиц, даваемого ф-лой (9), следует отличать распределение по импульсам реальных частиц. Последнее размыто даже при Т=0, однако, как и распределение квазичастиц, имеет резкий скачок при p=pF Для описания магн. свойств ферми-жидкости необходимо рассматривать функции распределения частиц, зависящие от проекции их спинов на направление магн. поля. При этом функция взаимодействия f является матрицей по спиновым индексам взаимодействующих частиц, к-рую в пренебрежении слабыми релятивистскими (спин-орбитальным и спин-спиновым) взаимодействиями можно записать в виде

f = Ij(р, p') + ss'G(p, р'), (11)

где I - единичная матрица, s и s' - Паули матрицы ,действующие на спиновые индексы частиц с импульсами р и р', j и G - скалярные функции. Магн. восприимчивость c ферми-жидкости при низких темп-pax стремится к пост. пределу:
265_284-31.jpg
где b0 - магн. момент изолированной частицы. С микроскопич. точки зрения функция взаимодействия f представляет собой амплитуду рассеяния квазичастиц "вперёд", когда передача энергии hw и передача импульса hk стремятся к нулю. Предельное значение амплитуды зависит от порядка перехода к указанному пределу, и функция f выражается через амплитуду, когда w, k и k/w стремятся к нулю. Последоват. микроскопич. вычисление параметров ферми-жидкости возможно лишь в случае разреж. системы, т. е. ферми-газа ,когда ср. расстояние между частицами велико по сравнению с длиной рассеяния а частиц друг на друге:

(N/V)-1/3>>a. (13)

В этом случае все характеристики системы можно определить, используя теорию возмущений. В частности, для эфф. массы имеем:
265_284-32.jpg

Бозе-жидкость

В области самых малых импульсов квазичастицы в бозе-жидкости являются фононами - квантами звука с законом дисперсии

e(р) = ир, (14)

где и - скорость звука, связанная со сжимаемостью жидкости при Т=0 обычной ф-лой:

u2 = дP/дr (15)

Соответственно теплоёмкость жидкости при самых низких темп-pax имеет вид
265_284-33.jpg
Ход кривой спектра e(р)при не малых значениях импульса определяется конкретными свойствами взаимодействия атомов. В реальном 4Не эта кривая, измеренная экспериментально с помощью неупругого рассеяния медленных нейтронов, имеет форму, показанную на рисунке. Фактически вклад в термодинамич. функции жидкости, кроме начальной - фононной - части, вносят квазичастицы вблизи минимума кривой - ротоны, где кривая может быть представлена в виде
265_284-34.jpg

с эксперим. значениями параметров: D=8,7 К, р0/h=1,9.108 см-1, m* = 1,1.10-24 г. При нормальном давлении д2e/др2|р''0>0. Это приводит к тому, что фононы нач. части кривой могут распадаться на фононы с меньшими импульсами, что даёт при малых р затухание ~ р5. Большая же часть кривой при T=0 является незатухающей. При р~1,5р0 кривая e(р) достигает значения 2D. В этой точке появляется возможность распада квазичастицы на два ротона с энергиями D каждый. При этом значении импульса кривая e(р) обрывается. Важнейшим свойством бозевской жидкости при низких темп-pax является её сверхтекучесть - способность двигаться относительно сосуда без диссипации энергии. Это свойство тесно связано с видом спектра квазичастиц. Диссипация энергии при абс. нуле температуры означает рождение квазичастиц при движении. Однако для спектра, показанного на рис., такой процесс невозможен при достаточно малой скорости движения в силу законов сохранения энергии и импульса. Действительно, пусть жидкость движется относительно сосуда со скоростью V. Тогда если энергия квазичастицы в неподвижной жидкости есть e(р), то в системе координат, связанной с сосудом, её энергия равна e(p)+pV, согласно закону преобразования энергии в нерелятивистской механике. Рождение квазичастиц, связанное с диссипацией энергии, возможно, если последнее выражение отрицательно при каких-то значениях р, т. е. если скорость движения больше критич. скорости Vc:

V>Vc = min[e(p)/p]. (17)

Если правая часть выражения (17) отлична от нуля, как это имеет место для реального спектра гелия, показанного на рис., диссипация отсутствует при всех скоростях, меньших Vc. При Т=0 вся жидкость движется как сверхтекучая. При конечных темп-pax совокупность квазичастиц движется как обычная жидкость - это "нормальная часть", с к-рой связана нек-рая плотность нормальной части жидкости rn. Остальная часть плотности rs=r-rn движется как сверхтекучая жидкость. По мере увеличения температуры р„ увеличивается, и при нек-рой температуре T=Tl(Р), зависящей от давления, rs обращается в нуль и жидкость теряет свойство сверхтекучести. Линия T=Tl(Р) является линией фазовых переходов второго рода. Для 4Не при давлении насыщенных паров Tl=2,18 К. Вблизи температуры перехода rs обращается в нуль по закону: rs~ (Tl - T)(2-a)/3, где a~ - 0,01 - критич. показатель теплоёмкости.
265_284-35.jpg
Своеобразными особенностями обладает распределение по импульсам истинных частиц - атомов жидкости. При Т < Tl в жидкости происходит Бозе - Эйнштейна конденсация, так что в наинизшем квантовом состоянии с р=0 находится конечная доля всех атомов. Волновая функция y0 этих "сконденсированных" атомов является дополнит. классич. переменной, описывающей сверхтекучую жидкость. Она записывается в виде
265_284-36.jpg
где n0 - плотность числа частиц в конденсате, j - фаза. y можно рассматривать как комплексный параметр порядка, наличие к-рого отличает сверхтекучую фазу от нормальной. Плотность числа частиц п0 не связана непосредственно с rs, однако она обращается в нуль одновременно с rs в точке перехода, хотя и по несколько иному закону: n0 ~ (Tl - T)2b, где b - критич. показатель параметра порядка. Фаза же волновой функции конденсата определяет скорость сверхтекучей части бозе-жидкости (сверхтекучую скорость):
265_284-37.jpg
(m - масса атома). При низких темп-pax п0 уменьшается с повышением температуры по закону:
265_284-38.jpg
Распределение по импульсам частиц, не находящихся в конденсате, имеет особенность в области малых импульсов:
265_284-39.jpg
Особый характер имеет вращение сверхтекучей части бозе-жидкости. Оно происходит вокруг отд. вихревых нитей, циркуляция скорости вокруг к-рых, в силу (19), квантована и равна целому кратному от 2ph/m. Микроскопич. вычисление параметров бозе-жидкости возможно также лишь в пределе разреж. системы, удовлетворяющей условию (13), т. е. бозе-газа. Для такого газа спектр квазичастиц для любых значений р определяется ф-лой Боголюбова (Н. Н. Боголюбов, 1947):
265_284-40.jpg
При малых р спектр (20) имеет вид (14), причём скорость звука и равна и=(4ph2па/m2)1/2. При р '' : (20) переходит в спектр свободных атомов р2/2m. Плотность числа атомов в конденсате при Т=0 в этой модели равна
265_284-41.jpg
Для реальной жидкости можно получить приближённую интерполяц. ф-лу Фейнмана, связывающую спектр возбуждений со статпч. формфактором жидкости S(k), к-рый можно определить по рассеянию рентгеновских лучей жидкостью:
265_284-42.jpg
Согласно этой ф-ле, ротонному минимуму соответствует максимум S (k), связанный с ближним порядком в расположении атомов жидкости.

Сверхтекучая ферми-жидкость

При достаточно низких температуpax состояние нормальной ферми-жидкости оказывается неустойчивым, если взаимодействие между квазичастицами имеет характер притяжения. Более точно, неустойчивость возникает, если амплитуда рассеяния квазичастиц с противоположными импульсами имеет соответствующий притяжению отрицат. знак хотя бы при одном значении относит. угл. момента I квазичастиц. Тогда с понижением температуры при нек-рой критич. температуре Тс происходит "спаривание" - образование молекулоподобных куперовских пар квазичастиц с противоположными импульсами. Эти пары являются бозонами и в нек-рых отношениях ведут себя как бозевский конденсат. Темп-pa перехода Тс экспоненциально зависит от амплитуды для соответствующего l. Ниже Тс ферми-жидкость становится сверхтекучей. Конкретные свойства сверхтекучей фазы зависят от значения момента, при к-ром происходит спаривание. Если спаривание происходит в состоянии с l=0, то жидкость остаётся изотропной. Волновая функция электронных пар является в этом случае скаляром вида (18). Спектр квазичастиц ниже точки перехода меняется и приобретает вид

e(р)==[D2 + v2F(p-pF)2]1/2 (21)

Из (21) видно, что в спектре имеется "щель": мин. энергия, необходимая для рождения квазичастицы, равна D (а пары частица-дырка 2D). Щель D зависит от температуры и обращается в нуль при Т=Тc. При Т=0 D=1,75Tc Благодаря наличию щели в спектре теплоёмкость, соответствующая фермиевской ветви возбуждений (21), при низких темп-pax экспоненциально мала. Система, однако, имеет и бозевскую ветвь возбуждений - обычный звук с законом дисперсии (14) - (15), так что теплоёмкость при низких темп-pax определяется законом (16). Спектр (21) удовлетворяет условию сверхтекучести с конечным значением Vс. Само это условие не является необходимым для сверхтекучести ферми-жидкости, поскольку неогранич. рождение фермиевских квазичастиц запрещено принципом Паули. Однако его выполнение обеспечивает равенство rn=0 при T = 0. Аналогичными свойствами, осложнёнными наличием электрич. заряда и анизотропией, обладают электроны в сверхпроводящей фазе металлов (см. Сверхпроводимость). Реальный 3Не переходит в сверхтекучее состояние с температурой перехода при нулевом давлении Tc~10-4 К. Спаривание происходит в состояние с l=1 и спином 1. Параметр порядка - волновая функция пар - может быть в этом случае представлен в виде тензора второго ранга yik, первый индекс к-рого относится к орбитальным, а второй - к спиновым переменным. Сверхтекучий 3Не является, т. о., жидким кристаллом. Существуют две фазы сверхтекучего 3Не - А- и B-фазы, отличающиеся видом тензора yik. Низкотемпературная B-фаза более изотропна, её анизотропия связана лишь с относительно слабым взаимодействием спинов ядер атомов 3Не с их орбитальным движением. В пренебрежении этим взаимодействием тензор yik можно привести к виду yik= y0dik где y0 - нек-рый скалар (dik - символ Кронекера). Спектр квазичастиц имеет вид (21) с не зависящей от углов щелью D. A-фаза существенно анизотропна. Тензор yik для неё можно привести к виду 265_284-43.jpg где Di', Di'', tk - компоненты единичных вещественных векторов D', D'', t. Векторы D' и D'' ортогональны и их векторное произведение l определяет направление орбитальных моментов всех куперовских пар. Вектор t определяет направление, на к-рое проекция спинов пар равна нулю. Спектр возбуждений А-фазы имеет вид (21), однако щель зависит от угла q между направлением импульса р и вектором l:D2 ~ sin2 q.

Литература по квантовым жидкостям

  1. Абрикосов А. А., Горьков Л. П., Дзялошинский И. Е., Методы квантовой теории поля в статистической физике, М., 1962;
  2. Пайнс Д., Нозьер Ф., Теория квантовых жидкостей, пер. с англ., М., 1967;
  3. Сверхтекучесть гелия-3. Сб. ст., пер. с англ., М., 1977;
  4. Квантовые жидкости и кристаллы, Сб. ст., пер. с англ., М., 1979. Л.

П. Питаевский

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что низкочастотные электромагнитные волны частотой менее 100 КГц коренным образом отличаются от более высоких частот падением скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тысяч кмилометров в секунду при 100 кГц до примерно 7 тыс км/с при 50 Гц.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 26.06.2019 - 11:49: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
25.06.2019 - 09:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
24.06.2019 - 17:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Кирилла Мямлина - Карим_Хайдаров.
24.06.2019 - 08:10: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
24.06.2019 - 08:01: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
24.06.2019 - 07:59: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Проблема народного образования - Карим_Хайдаров.
24.06.2019 - 01:25: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
24.06.2019 - 01:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
21.06.2019 - 15:02: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
21.06.2019 - 08:47: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
18.06.2019 - 20:21: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Декларация Академической Свободы - Карим_Хайдаров.
17.06.2019 - 06:12: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution