к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Фундаментальные физические константы

Фундаментальные физические константы - постоянные, входящие в уравнения, описывающие фундаментальные законы природы и свойства материи - эфира. Фундаментальные физические константы определяют точность, полноту и единство наших представлений об окружающем мире, возникая в теоретич. моделях наблюдаемых явлений в виде универсальных коэф. в соответствующих матем. выражениях. Благодаря фундаментальным физическим константам возможны инвариантные соотношения между измеряемыми величинами. Т. о., Фундаментальные физические константы могут также характеризовать непосредственно измеряемые свойства материи и фундаментальные сил природы и совместно с теорией должны объяснять поведение любой физ. системы как на микроскопич., так и на макроскопич. уровне. Набор фундаментальных физических констант не является фиксированным и тесно связан с выбором системы единиц физических величин, он может расшириться вследствие открытия новых явлений и создания теорий, их объясняющих, и сократиться при построении более общих фундаментальных теорий.

Наиб. часто применяемыми фундаментальными физическими константами являются: гравитационная постоянная G ,входящая в закон всемирного тяготения, см. Тяготение); скорость света с, входящая в ур-ния электродинамики и соотношения.

Планка постоянная h (или 5077-1.jpg=h/2p), входящая в квантовую теорию излучения, ур-ния квантовой механики и определяющая связь между величинами микро-и макромира; заряд электрона е - элементарный электрич. заряд, входящий в микроскопич. ур-ния электродинамики, в частности в Кулона закон; массы электрона тe и протона тр; Больцмана постоянная k, определяющая связь между температурой и характерной энергией термодинамич. системы. Развитие физики атома, атомного ядра и элементарных частиц потребовало введения ряда новых Ф. ф. к.: Ридбер-га постоянной для бесконечной массы атомного ядра Roo, определяющей атомные спектры; тонкой структуры постоянной ос, характеризующей эффекты квантовой электродинамики и тонкую структуру атомных спектров; магнитных моментов электрона и протона mе и mр; константы Ферми GF и угла Вайнберга qW, характеризующих эффекты слабого взаимодействия; массы промежуточных Z0-и W-бозонов тZ и mW, являющихся переносчиками слабого взаимодействия, и т. д. Развитие физики сильных взаимодействий на основе кварковой модели составных адронов и квантовой хромодинамики, несомненно, приведёт к новым Ф. ф. к. С др. стороны, имеется тенденция к построению единой теории всех фундам. взаимодействий (эл--магн., слабого, сильного и гравитационного, см. Великое объединение ),что позволило бы уменьшить число независимых Ф. ф. к. Так, уже создана единая теория электрослабых взаимодействий (т. н. стандартная модель Вайнберга - Салама - Глэшоу), в результате чего константа Ферми GF перестаёт быть независимой и выражается через константы 5077-2.jpg, a, qW и mW:

5077-3.jpg

Наиб. точные значения Фундаментальных физических констант обычно получают путём сравнения результатов прецизионных измерений с предсказаниями соответствующих теоретич. моделей. Все перечисленные выше Ф. ф. к. (кроме a) являются размерными величинами, поэтому их численные значения зависят от размера соответствующих осн. физ. величин и выбора системы единиц, а также от степени точности измерений и расчётов. В итоге возникает довольно сложная процедура согласования значений фундаментальных физических констант на основе наименьших квадратов метода с учётом соотношений, связывающих фундаментальные физические константы. Последнее такое согласование было проведено Р. Коэном (Е. R. Cohen) и Б. Тэйлором (В. N. Taylor) в 1986 (табл.). Уточнение значений Ф. ф. к. имеет важное значение для метрологии, а также может привести к обнаружению (или устранению уже известных) противоречий в физ. описании природы.

Использование Фундаментальных физических констант позволяет приблизиться к установлению "истинной" системы осн. физ. единиц на инвариантной основе, фиксированной в природе. Согласно М. Планку (М. Planck), т. н. естественные единицы измерения Планка определяются так, чтобы нек-рые из Фундаментальных физических констант обратились в единицу (или фиксированное число). Первую попытку построить такую систему в 1874 предпринял Дж. Стони (G. J. Stoney), предложивший в качестве таких констант с, G и е. В 1899 Планком была предложена естеств. система единиц, получившая его имя. В системе единиц Планка к единице приравниваются с, G и 2p/h. При этом планковская единица массы mр получается равной (5077-4.jpgc/G)1/25077-5.jpg2,2.10-5г, планковская единица длины lР =5077-6.jpgPс = (5077-7.jpgG/с3)5077-8.jpg1,5.10-35м, планковская единица времени tР =lP/с = (5077-9.jpgG/c5)1/25077-10.jpg5,4.10-44 с. Эти единицы используются в квантовой теории гравитации, космологии и моделях единой теории фундам. взаимодействий.

В атомной физике и нерелятивистской квантовой механике применяется система атомных единиц Хартри (D. R. Hartree, 1928). В этой системе к единице приравнены тe, е и 5077-11.jpg, единицей длины служит боровский радиус а0=5077-12.jpg/mесa5077-13.jpg5,3.10-9см, единицей скорости - скорость электрона на первой боровской орбите u0=aс, единицей

5077-14.jpg

энергии - удвоенный ионизац. потенциал атома водорода 5077-15.jpg = mес2a2 = 27,2 эВ (энергия Хартри).

В релятивистской квантовой теории (в частности, в квантовой электродинамике) и физике элементарных частиц обычно используется система единиц, в к-рой с =5077-16.jpg= 1. В этой системе остаётся единств. независимая единица, в качестве к-рой удобно выбрать единицу энергии элек-тронвольт или единицу длины; в этом случае электрич. заряд становится безразмерной величиной: е2 = a(5077-17.jpgс). При использовании перечисленных естеств. систем существенно упрощается запись ур-ний и соотношений в соответствующих физ. теориях за счёт уменьшения числа Фундаментальных физических констант.

В метрологии за основную принята система СИ. Ф. ф. к. в ней применяются для установления соотношений между единицами физ. величин с целью их воспроизведения. При этом возникает единая система взаимосвязанных эталонов осн. единиц. Такая система эталонов базируется в осн. на квантовых явлениях (квантовая метрология ),её осн. элемент- эталон времени-частоты. Повышение точности измерения с привело к тому, что оказалось выгоднее фиксировать значение константы с и принять (1983) новое определение единицы длины метра как расстояния, проходимого в вакууме плоской эл--магн. волной за (1/с) долю секунды. Т. о., эталон длины стал связан с эталоном времени-частоты, в результате чего точность воспроизведения единицы длины существенно повысилась.

Удалось уточнить также единицу электрич. напряжения вольт. Используя соотношение, описывающее Джозефсона эффект:

5077-18.jpg

где п=1, 2, ..., f-частота излучения, а U-напряжение, можно воспроизводить вольт через подбор соответствующей частоты и нужного числа п переходов Джозефсона, если фиксировать (1990) значение постоянной Джозефсона KJ = 2е/h = 483597,9 ГТц.В-1. Квантовый Холла эффект характеризуется квантованным холловским сопротивлением RH = RK /i, i=1, 2, 3, ..., где постоянная фон Клит-цинга RK = h/е2 = m0c/2a имеет размерность электрич. сопротивления. Т. о., фиксирование (1990) значения RK = 25812,807 Ом даёт хорошо воспроизводимое представление единицы электрич. сопротивления.

Константа RK однозначно связана с a - осн. константой квантовой электродинамики, значение к-рой определяется с высокой точностью независимым образом. Постоянная а связана также с константой КJ:

5077-19.jpg

где g'р и m'p-гиромагнитное отношение и магн. момент протона в воде, mБ - магнетон Бора. Т. о., согласование значений всех этих констант является важной задачей физики.

До сих пор не удалось дать "естеств." определение единицы массы СИ - килограмма, основанное на одной из Ф. ф. к., напр. массе элементарной частицы, атома или атомного ядра и Авогадро постоянной NA. Имеется соот-

ношение, связывающее NA с Фарадея постоянной F и др. известными Ф. ф. к.:

5077-20.jpg

что согласуется с табличным значением (1 ррт= 10-6).

В настоящее время значительно возросла точность измерения постоянной Ридберга

5077-21.jpg

за счёт применения метода двухфотонной бездоплеровской спектроскопии и замены интерфсрометрич. измерений измерениями оптич. частот атома водорода. Приведённое выше значение Roo не было использовано при согласовании значений Ф. ф. к.

Ниже приведён ряд новых результатов, не отражённых в табл. Получено (1989) на порядок более точное значение для отношения магн. моментов дейтрона и протона: md/mp = 0,3070122081(4). Соответственно изменятся все др. отношения, включающие md. Измерено (1989) гиромагн. отношение протона в воде:

5077-22.jpg

Повышена точность измерения аномальных магн. моментов электрона и позитрона:

5077-23.jpg

столь близкое значение этих величин, в частности, подтверждает тождественность свойств частицы и античастицы. Сравнение вычисленного (1996) аномального магн. момента электрона ае с его эксперим. значением дало возможность уточнить значение постоянной тонкой структуры: a-1 = 137,03599993(52), (0,0038pрm).

Измерение скорости звука в аргоне (1988) позволило установить новое значение молярной газовой постоянной: R = 8,314471(14) Дж.моль-1 К-1, (1,7 ррт).

Нек-рые космологич. модели эволюции Вселенной [П. Дирак (P. Dirac), 1938; Дж. Гамов, 1967] предсказывают возможность медленного изменения Ф. ф. к. со временем, отнесённым к возрасту Вселенной. В настоящее время (1996) нет никаких эксперим. или наблюдательных (в т. ч. астр.) данных, свидетельствующих о таких изменениях (по крайней мере, линейных) для большей части истории Вселенной (трудно сказать ч--л. определённое о значениях Ф. ф. к. на ранней стадии эволюции Вселенной вплоть до этапа нуклеосинтеза).

Литература по

  1. Квантовая метрология и фундаментальные константы. Сб. ст., пер. с англ., М., 1981; Соhen E. R., Тауlor В. N.,The 1986 adjustment of the fundamental physical constants, "Rev. Mod. Phys.", 1987, v. 59, p. 1121; Proc. of the 1988 Conference on precision electromagnetic measurements, "IEEE Trans. on Instrumentation and Measurement", 1989, v. 38, № 2, p. 145; Двоеглазов В. В., Тюх-тяев Ю. Н., Фаустов Р. Н., Уровни энергии водородоподобных атомов и фундаментальные константы, "ЭЧАЯ", 1994, т. 25, с. 144.

    Р. Н. Фаустов.

    к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

    Знаете ли Вы, как разрешается парадокс Ольберса?
    (Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
    Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

    НОВОСТИ ФОРУМА

    Форум Рыцари теории эфира


    Рыцари теории эфира
     10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
    10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
    10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
    10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
    10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
    10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
    10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
    10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
    10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
    10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
    10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
    10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
    Bourabai Research - Технологии XXI века Bourabai Research Institution