к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Тиристор

Тиристор - трёхэлектродный полупроводниковый прибор, состоящий из трёх p - n-переходов ,взаимодействие между к-рыми приводит к тому, что прибор может находиться в одном из двух устойчивых состояний: выключенном- с высоким сопротивлением и включённом - с низким. Полупроводниковая структура T. состоит из четырёх слоев чередующегося типа проводимости (п+рпр+ ; рис. 1), образующих три расположенных друг над другом p - n-перехода. Внутренний базовый р-слой обычно выполняется сильнолегированным (концентрация примеси N=1017-1018 см-3) и тонким, чтобы обеспечить достаточно высокий (0,7-0,9) коэф. переноса b n+pn-транзистора (см. Транзистор биполярный ).Базовый n-слой выполняется относительно толстым и слаболегированным (N= 1013 - 1015 см-3). При приложении внеш. напряжения указанной на рис. 1 полярности (прямое смешение) крайние переходы Э1 и Э2 (эмиттеры) смещены в проводящем, а центральный K1 (коллектор) - в запорном направлениях; его область пространственного заряда (ОПЗ) расположена почти полностью в n-базе. Эмиттер Э1 обычно имеет распределённые по всей площади шунтирующие каналы, выполненные в виде выходов р-слоя сквозь n+ -слой к ме-таллич. контакту. Процессы, определяющие возможность переключения, протекают след. образом. Электронно-ды-рочные пары, генерируемые, напр., теплом в ОПЗ, разделяются полем; дырки и электроны выбрасываются в р- и п-базы, соответственно понижают потенц. барьеры эмиттеров Э1 и Э2, что приводит к соответствующей инжекции неосновных носителей в базы. Эти носители диффундируют через базовые области, частично рекомбинируя с осн. носителями, а затем выбрасываются полем через ОПЗ в соответствующие базы уже в качестве осн. носителей, понижают барьеры Э1 и Э2 и т. д. Тиристор находится в устойчивом запертом состоянии до тех пор, пока количество носителей, поступающих в базовые слои, не превышает их потерь из-за рекомбинации и ухода в эмиттеры. С ростом приложенного напряжения растёт протекающий через n+рпр+-структуру ток из-за расширения ОПЗ и увеличения поля в ней, приводящих к увеличению тока утечки. Возрастание тока ведёт к относительному уменьшению потерь; это связано в основном с ростом инжекционной компоненты тока эмиттерных переходов и полевому ускорению переноса носителей через n-базу. Поэтому при определенном напряжении поступление носителей начинает превышать потери. Этот процесс вследствие положит. характера обратной связи нарастает лавинообразно и приводит к заполнению базовых областей электронно-дырочной плазмой большой плотности (см. Плазма твёрдых тел), смещение коллектора вследствие этого меняет знак, и прибор переходит во включённое состояние. Шунтирующие каналы в эмиттере Э1, увеличивающие потери дырок в p-базе, позволяют поднять напряжение переключения вплоть до напряжения лавинного пробоя коллектора. Вольт-амперная характеристика (BAX), определяемая вышеописанными процессами, показана на рис. 2; она описывается выражением

5021-9.jpg

где jко -ток утечки коллекторного перехода; a1, a2-коэф. усиления п+рп- и р+np-транзисторов, составляющих n+ pnp+ -структуру. Из (1) следует, что условием переключения (jко5021-10.jpg0, т. е. U5021-11.jpg0) приближённо можно считать (a1 + a2)5021-12.jpg1. Переключение n+рпр+ -структуры можно осуществить не повышением напряжения, а, напр., импульсом света с энергией кванта, достаточной для генерации электронно-дырочных пар (фототиристор), или инжекцией электронов эмиттером Э1 при пропускании импульса тока в цепи AB (рис. 1). В этом случае из-за большого тангенциального сопротивления p-базы инжектирует узкая область эмиттера вдоль границы с электродом управления В, Процесс включения происходит только в этой области, и из неё включённое состояние распространяется по всей площади прибора. На нач. стадии, пока плотность тока во включённой части высока, распространение включённого состояния определяется электрич. полем на границе включённой и невключённой областей, смещающим эмиттеры в проводящем направлении, а по мере уменьшения плотности тока определяющим механизмом становится диффузия плазмы из включённой области. Скорость этих процессов обычно лежит в пределах 0,1-0,005 мм.мкс в зависимости от мгновенной плотности тока и конструкции прибора. BAX T. в установившемся включённом состоянии практически аналогична BAX р+nn+ -диода; распределение электронно-дырочной плазмы в базовых слоях показано на рис. 3. Выключение T. обычно осуществляется путём кратковрем. изменения полярности внеш. напряжения. Ток при этом меняет направление и носители заряда из плазмы вытягиваются во внеш. цепь, обеспечивая протекание тока. Концентрация плазмы у эмиттерных переходов уменьшается как за счёт вытягивания неосновных носителей, так и за счёт рекомбинации. Из p-базы электроны уходят через n+-слой, а избыточные дырки инжектируются коллектором К в n-базу; низковольтный эмиттер Э1 быстро восстанавливается и пробивается. Через переход Э2 из n-базы уходят дырки, но избыточные электроны практически не могут уйти через потенц. барьер прямосмещённого коллектора. Поэтому протекающий через T. обратный ток почти не выносит заряд из n-базы: уход дырок через Э2 сопровождается поступлением через коллектор К почти такого же кол-ва дырок, создаваемых ударной ионизацией в переходе Э1, и заряд в n-базе исчезает практически только вследствие рекомбинации. После того как концентрация дырок у перехода Э2 уменьшается до равновесного значения, начинается образование ОПЗ, граница к-рой быстро перемещается в глубь n-базы, сопротивление прибора резко возрастает, а ток в цепи падает. В квазинейтральной части n-базы при этом нек-poe время сохраняется довольно большое кол-во избыточных носителей заряда. При изменении полярности внеш. напряжения на прямое эти носители выбрасываются полем коллектора в базы, вызывая всплеск прямого тока; однако если этот ток меньше нек-рой критич. величины jкр, приводящей к лавинообразному нарастанию концентрации, T. остаётся в выключенном состоянии. Промежуток времени между изменением направления тока через T. до момента, когда становится возможным приложение прямого смещения, наз. временем выключения tq. Оценочно, tq5021-15.jpgтrln(jпр/ jкр), где тp - время жизни дырок в n-базе. Отсюда следует, что статич. и динамич. характеристики T. жёстко взаимосвязаны. Для того чтобы обеспечить блокирование большого напряжения, n-база должна быть слаболегированной и иметь толщину, превышающую размер ОПЗ коллектора примерно на Lp= (Dptp)1/2. Увеличение толщины ведёт к увеличению напряжения на приборе во включённом состоянии. Для того чтобы оно оставалось на приемлемом уровне, необходимо увеличивать Lp, что ведёт к увеличению tq, т. е. к ухудшению частотных характеристик прибора. Поэтому быстродействующие T. имеют сравнительно невысокое рабочее напряжение, а высоковольтные - большое время выключения.


5021-8.jpg

Рис. 1. Четырёхслойная р+прп + -структура тиристора: АС-основная цепь; AB-цепь управления; 1 - шунтирующие каналы; 2 - ОПЗ коллектора.

5021-13.jpg

Рис. 2. BAX тиристора: а - при прямом смещении; б -при обратном смещении.

5021-14.jpg

Рис. 3. Распределение электронно-дырочной плазмы в базовых слоях включённого тиристора (+ на р+-слое). Штрихпунктирными линиями показаны три последовательные стадии рассасывания плазмы при выключении тиристора (- на р+ -слое).

Основным полупроводниковым материалом для изготовления T. является кремний. Четырёхслойная п+рпр+ -структура изготавливается, как правило, путём последовательных операций термодиффузии примесей р- и n-типа в пластину монокристаллич. кремния, причём для получения эмиттерного n+-слоя сложной геом. формы применяются маскирование окислом и фотолитография.

Диапазон рабочих параметров совр. T. чрезвычайно широк. T. в планарном исполнении, обычно интегрируемые с др. элементами схем, имеют рабочие токи 10-2 - 10-1A при напряжениях 101 -102B; T. предельной мощности имеют рабочие токи 15021-16.jpg3.103A при напряжениях (35021-17.jpg6)·103 В. Четырёхслойная n+pnp+ -структура и протекающие в ней физ. процессы лежат в основе целого ряда приборов тиристорного типа, сильно отличающихся от описанного выше обычного T. К ним относятся, в частности: а) симистор, состоящий из двух встречно-параллельно включённых n+pnp+ -структур с общим электродом управления, выполненных в одной полупроводниковой пластине. Симистор обычно используется в качестве ключа переменного тока; б) фототиристор - тиристор, переключение к-рого осуществляется импульсом света. В этом приборе цепь управления полностью изолирована от осн. цепи, что особенно удобно при работе на больших напряжениях; в) запираемый тиристор, выключение к-рого осуществляется не переменой полярности внеш. напряжения, а импульсом запирающего тока в цепи управления, что позволяет существенно упростить конструкцию аппаратуры. Предельные параметры совр. запираемых T. почти такие же, как и у обычных тиристоров; г) реверсивно включаемый динистор, включение к-рого осуществляется кратковрем. изменением полярности внеш. напряжения. Этот прибор, в отличие от всех др. приборов тиристорного типа, включается однородно и одновременно сразу по всей рабочей площади. Это позволяет переключать очень большие (105-106 А) импульсные токи, а также работать на высоких (до 105 Гц) частотах при коммутации больших мощностей.

Перспективным материалом для приборов тиристорного типа является арсенид галлия. Из-за большей, чем у кремния, ширины запрещённой зоны он позволяет работать при большей температуре, блокировать большее напряжение при сравнительно тонкой ОПЗ и, следовательно, тонкой базе с малым тp; это даёт возможность существенно улучшить быстродействие приборов.

Литература по тиристорам

  1. Управляемые полупроводниковые вентили, пер. с англ., M., 1967;
  2. Блихер А., Физика тиристоров, пер. с англ., Л., 1981;
  3. Евсеев Ю. А., Дерменжи П. Г., Силовые полупроводниковые приборы, M., 1981;
  4. Тучкевич В. M., Грехов И. В., Новые принципы коммутации больших мощностей полупроводниковыми приборами, Л., 1988.

И. В. Грехов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution