к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Сканирующий туннельный микроскоп

Сканирующий туннельный микроскоп - прибор для изучения поверхности твёрдых электропроводящих тел, основанный на сканировании металлич. острия над поверхностью образца на расстоянии8040-54.jpg . Такое расстояние достаточно мало для туннелирования электронов через контакт, т.е. для протекания туннельного тока j8040-55.jpg 1-10 нА между остриём и образцом, при разности потенциалов V между ними от единиц мВ до неск. В (в зависимости от материалов электродов и целей). При этом цепь обратной связи поддерживает значение j постоянным, соответственно изменяя z. Синхронная со сканированием запись сигнала обратной связи Vz (на двухкоординатном самописце - в виде кривых, на экране телевиз. трубки - в виде карты и т. п.) представляет собой увеличенную запись профиля поверхности постоянного туннельного тока j(x, у). Она совпадает с геом. поверхностью образца S(x, у), если высота потенц. барьера (работа выхода)электронов8040-56.jpg одинакова по всей поверхности S, поскольку8040-57.jpg , где8040-58.jpg. В ином случае распределение8040-59.jpg может быть получено путём модуляции расстояния на частоте, более высокой, чем полоса пропускания цепи обратной связи и измерения возникающей на этой частоте модуляции j, амплитуда к-рой пропорциональна8040-60.jpg Т. о., в результате сканирования острия над участком исследуемой поверхности получаются одновременно её профиль S(x, у)и распределение работы выхода8040-61.jpg

С. т. м. изобретён Г. Биннингом и Г. Рорером в 1982 [1]. Увеличение его определяется отношением размеров записи кадра (на бумаге или экране трубки) к размерам сканируемого участка поверхности, последние могут составить от единиц8040-62.jpg до десятков мкм. Разрешающая способность микроскопа по х, у достигает ~ 18040-63.jpg, а по z порядка 0,018040-64.jpg. Прибор может работать в вакууме, газе или жидкости, поскольку z имеет величину порядка межатомных расстояний в жидкости. Выбор среды определяется конкретной задачей, прежде всего условиями подготовки и поддержания чистоты (или сохранности) образца. Малая величина l и низкая энергия туннелирующих электронов исключают опасность повреждения образца током. Длительность записи одного кадра от ~ 0,03 с до 30 мин.
8040-65.jpg

Рис. 1. Схема устройства туннельного микроскопа: Vz - напряжение обратной связи, регулирующее величину z: пунктир - траектория острия, записываемая регистрирующей системой при движении острия над линией L;8040-66.jpg- сглаженная запись ступеньки; В - запись участка С с пониженной работой выхода;8040-67.jpg - модуляция r с целью определения работы выхода.

Схема устройства С. т. м. приведена на рис. 1. Пьезоэлектрич. пластины Рх, Ру, Рz свободными концами (вне рис. 1) закреплены на станине прибора и при приложении к ним электрич. напряжения двигают остриё вдоль соответствующей координаты за счёт собств. деформации (пьезодвигатели). Устройства сближения образца и острия до малого расстояния, перекрываемого пьезодвигателем, осуществлены в разл. вариантах [2]. Блок-схема туннельного микроскопа приведена на рис. 2.

Атомная структура поверхности свежего скола монокристалла графита (долго остающегося чистым на воздухе) часто служит в качестве тест-объекта (рис. 3). Это фотография экрана телевиз. трубки, представляющая собой результат сканирования образца, при к-ром сигнал обратной связи Vz модулирует яркость пятна, перемещающегося по кадру. Светлые пятна - атомы С, выступающие над ср. плоскостью поверхности, тёмные места - углубления между ними.
8040-68.jpg

Рис. 2. Блок-схема туннельного микроскопа: У - усилитель туннельного тока; ОС - схема обратной связи; Д - пьезодвигатель острия; РО - устройство регистрации и обработки данных.
8040-69.jpg

Рис. 3. Атомная структура поверхности ориентированного пиролитического монокристалла графита.

Одно из первых исследований - изучение реконструиров. структуры поверхности (111) монокристалла Si: на рис. 4 границы элементарной ячейки (7 X 7) показаны ромбом, одна сторона к-рого лежит на ступени высотой в один слой атомов [3, 4]. При меньшей разрешающей способности (~108040-71.jpg) можно изучать состояние поверхности образца на участках большего размера; на рис. 5 показан записанный на двухкоординатном самописце профиль обработанной поверхности (100) кристалла Si (применённого в МДП-структуре для исследования квантового Холла эффекта [5]).
8040-70.jpg

Рис. 4. Атомная структура реконструированной поверхности (111) монокристалла Si.

8040-72.jpg

Рис. 5. Поверхность (100) монокристалла Si, обработанная по высшему классу точности.

Успех С. т. м. вызвал появление аналогичных методов исследования поверхностей посредством электрич., световых и др. датчиков. Среди них наиб. интересен сканирующий атомно-силовой микроскоп, основанный на измерении сил, действующих на микроскопия, алмазное остриё, находящееся на расстоянии ~ 3-1108040-73.jpg от поверхности образца (к-рый может быть диэлектриком); остриё укрепляется на чувствит. пружине, деформации к-рой измеряются при помощи С. т.м. [2].

Наиб. важные области применения С. т. м.: исследования атомного строения поверхностей, металлических, сверхпроводящих и полупроводниковых структур, явлений адсорбции, и поверхностных хим. процессов, структуры молекул и биол. объектов, технол. исследования в области микро- и субмикроэлектроники, плёночных покрытий и обработки поверхностей; применение С. т. м. как инструмента обработки поверхностей в субмикроскопич. масштабе и т. д.

Литература по сканирующим туннельным микроскопам

  1. Binning G., Rohrer H., Scanning tunneling microscopy, «Helv. Phys. Acta», 1982, v. 55, № 6, p. 726;
  2. Эдельман В. С., Сканирующая туннельная микроскопия, «ПТЭ», 1989, № 5, с. 25;
  3. Эдельман В. С., Развитие сканирующей туннельной и силовой микроскопии, «ПТЭ», 1991, № 1, с. 24;
  4. Xайкин М. С. и др., Сканирующие туннельные микроскопы, «ПТЭ», 1987, № 4, с. 231;
  5. Весker R. S. и др., Tunneling images of atomic steps on the Si (111) 7 x 7 surface, «Phys. Rev. Lett.», 1985, v. 55, № 19, p. 2028;
  6. Xайкин М. С. и др., Сканирующая туннельная микроскопия границы раздела Si - SiO2 в МДП-структуре, «Письма в ЖЭТФ», 1986, т. 44, . № 4, с. 193.

М. С. Хайкин

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

ПУТИН : РОССИЯ = 5 : 0

Мало ли что я обещал гоям?
Российскую пенсию будут получать только израильтяне!


ГОЛОСОВАТЬ ПРОТИВ ПОВЫШЕНИЯ ВОЗРАСТА ВЫХОДА НА ПЕНСИЮ

Депутат Госдумы Олег Шеин: Повышение пенсионного возраста? - Действуем на пресечение!!!

ВСЕ ВИДЕО
Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
  19.06.2018 - 11:12: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
19.06.2018 - 01:53: Беседка - Chatter -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
17.06.2018 - 17:14: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Фурсова - Карим_Хайдаров.
16.06.2018 - 08:05: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
15.06.2018 - 16:59: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМА ПРЕСНОЙ ВОДЫ - Карим_Хайдаров.
14.06.2018 - 23:48: СОВЕСТЬ - Conscience -> Пресса против Эйнштейна: первые ростки - Карим_Хайдаров.
14.06.2018 - 23:44: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Маклакова - Карим_Хайдаров.
14.06.2018 - 23:02: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
14.06.2018 - 08:21: АСТРОФИЗИКА - Astrophysics -> АСТРОФИЗИКА ДЛЯ ВСЕХ - Карим_Хайдаров.
13.06.2018 - 19:08: Беседка - Chatter -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
13.06.2018 - 18:25: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> ПОПУЛЯРИЗАЦИЯ НАУКИ - Карим_Хайдаров.
13.06.2018 - 17:00: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> БИОТРАНСМУТАЦИЯ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution