Производство энтропии - прирост энтропии в физ. системе за единицу времени в результате протекающих в ней неравновесных
процессов; одно из осн. понятий термодинамики
неравновесных процессов. П. э., | отнесённое к единице объёма, наз. локальным
производством энтропии. Если термодинамич. силы(градиенты
температуры, концентраций компонентов или их хим. потенциалов, массовой скорости,
а в гетерогенных системах - конечные разности термодинамич. параметров) создают
в системе сопряжённые им потоки(теплоты,
вещества, импульса и др.), то локальное производство энтропии в такой неравновесной системе
где n - число независимых действующих
термодинамич. сил. Полное производство энтропии равно интегралу от s по объёму системы.
Если термодинамич. силы и потоки постоянны в пространстве, то полное П. э. отличается
от локального лишь множителем, равным объёму системы.
Потоки связаны
с вызывающими их термодинамич. силамилинейными
соотношениями
т. е. выражается квадратичной формой от термодинамических сил.
Производство энтропии отлично от нуля и положительно для необратимых
процессов (критерий необратимости 0).
В стационарном состоянии производство энтропии минимально (Пригожина теорема ).Конкретное
выражение для входящих в производство энтропии кинетич. коэф. через потенциалы взаимодействия
частиц определяется методами неравновесной ста-тистич. механики или кинетической
теории газов. В случае теплопроводности П. э. пропорционально квадрату градиента
температуры и коэф. теплопроводности, в случае вязкого сдвигового течения - квадрату
градиента скорости и сдвиговой вязкости, в случае диффузии - квадрату градиента
концентрации и коэф. диффузии.
Литература по производству энтропии
Пригожин И., Введение в термодинамику необратимых процессов, пер, с англ., М., 1960;
Термодинамика необратимых процессов, пер. с англ., М., 1962;
де Гроот С., Мазур П., Неравновесная термодинамика, пер. с англ., М., 1964;
Хаазе Р., Термодинамика необратимых, процессов, пер. с нем., М., 1967;
Зубарев Д. Н., Неравновесная статистическая термодинамика, М.. 1971;
Дьярмати И., Неравновесная термодинамика. Теория поля и вариационные принципы, пер. с англ., М., 1974;
Кайзер Д., Статистическая термодинамика неравновесных процессов, пер. с англ., М., 1990.
Знаете ли Вы, как разрешается парадокс Ольберса? (Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды. Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.