к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Ползучесть материалов

Ползучесть материалов - непрерывная плас-тич. деформация материалов под воздействием пост. механич. нагрузки или напряжений. Ползучести подвержены все кристаллич. и аморфные твёрдые тела при всех видах механич. нагрузок. П. м. наблюдают как при темп-pax, близких к температуре жидкого гелия, так и при близких к температуре плавления. Однако с увеличением температуры Т скорость П. м. растёт, что ограничивает долговечность конструкций, работающих при пост. нагрузках и повыш. темп-pax. Малая скорость П. м.- гл. требование, предъявляемое к жаропрочным материалам. Существ. техн. значение имеет ползучесть металлич. материалов и керамики при повыш. темп-pax и давлениях. Зависимость величины деформации 4002-2.jpgот времени f при пост. температуре Т и напряжении4002-3.jpgописывают т. н. кривой ползучести (рис. 1). Процесс П. м. условно разбивают на стадии: I - неустановившаяся П. м., когда скорость деформации e непрерывно понижается (происходит упрочнение); II - установившаяся П. м.4002-4.jpgIII-стадия ускоренной П. м., к-рая заканчивается разрушением. Относит. протяжённость каждой стадии зависит от условий испытания или эксплуатации (от Т и4002-5.jpg), свойств материала и его структуры (предварит, обработки).

4002-1.jpg

Рис. 1. Кривая ползучести.


Стадии I предшествует т. н. мгновенная деформация 4002-6.jpg к-рая возникает при приложении к испытываемому образцу (или в конструкции - к деталям) механич. нагрузки. При низких Т величина соизмерима с деформацией, к-рая накапливается в течение всей последующей ползучести4002-7.jpgПри высоких Т накапливаемая деформация4002-8.jpg

Неустановившаяся стадия ползучести. При повышенных Т неустановившаяся стадия П. м. наблюдается только в тех случаях, когда s вызывает появление e0. Если e0 очень мала, то участок, соответствующий стадии I, тоже весьма мал.

Скорость деформации e на стадии I меняется со временем t по закону

4002-9.jpg

где А - постоянная, зависящая от4002-10.jpg При m = 1

4002-11.jpg

т. н. логарифмич. закон П. м.4002-12.jpg- постоянная, не зависящая от времени). Такая кинетика наблюдается при абс. темп-pax Т от 0,05 до 0,34002-13.jpg(температуры плавления материала) и4002-14.jpg Согласно физ. модели, в недеформиров. материале имеется нек-рое кол-во источников дислокаций, к-рые активируются под влиянием приложенных4002-15.jpgи тепловых флуктуаций. Со временем их число истощается. При повышении 4002-16.jpgи Т значение4002-17.jpgи постоянная в ур-нии (2) увеличиваются, а величина т в (1) уменьшается. При m = 2/3

4002-18.jpg

На многих металлич. материалах наблюдают парабо-лич. ползучесть (или4002-19.jpgползучесть). Величина4002-20.jpgрастёт с повышением Т и 4002-21.jpg

Имеются эксперим. данные, полученные при повыш. темп-pax, к-рые не описываются ни логарифмической, ни параболич. зависимостями. Поэтому предложен ряд эмпирич. ур-ний, описывающих кинетику неустановившейся П. м.,- степенные ряды, экспоненциальные функции, комбинации разл. функций.

Установившаяся ползучесть. Установившуюся П. м. рассматривают как динамич. равновесие процессов де-формац. упрочнения и термич. возврата. Напряжения течения при этом не изменяются со временем. Это записывается следующим образом:

4002-22.jpg

где4002-23.jpgдеформац. упрочнение,4002-24.jpg термич. возврат, к-рый оценивают по уменьшению напряжений текучести при отжиге. Из (4) следует

4002-25.jpg

Эксперименты,4002-26.jpgпроведённые на металлах и сплавах, показывают, что4002-27.jpgи4002-28.jpg(с учётом влияния на возврат приложенных напряжений) совпадают. Непосредств. измерение4002-29.jpgи её оценки по эксперим. значениям4002-30.jpgи r для одного и того же металла дают хорошее совпадение.

Экспериментально установлено два осн. вида зависимости 4002-31.jpg от 4002-32.jpgВ первом случае4002-33.jpgмодуль упругости) и 4002-34.jpgсправедливо соотношение

4002-35.jpg

где А1 и В постоянные, не зависящие от4002-36.jpgСоотношение (5) справедливо для мн. материалов (металлы и сплавы, керамика, полимеры, ионные кристаллы, полупроводники) в интервале4002-37.jpgв к-ром 4002-31.jpg изменялось на 10 порядков. Во втором случае s/E=4002-39.jpg и Т > > 0,5 Тпл справедливо соотношение

4002-40.jpg

где A2 и n постоянные, не зависящие от4002-41.jpgдля металлов n~4-5, а для металлич. твёрдых растворов4002-43.jpg

С зависимостью4002-44.jpgсвязано понятие предела ползучести - напряжения, при к-ром скорость П. м. имеет нек-рую заданную величину. При малых4002-45.jpg когда e p накапливаемая деформация e весьма малы, отсутствует определённость относительно того, какая измеряется скорость, связанная со стадиями I и II или только со стадией II. Поэтому иногда под пределом ползучести понимают напряжение, к-рое вызывает заданную скорость П. м. через заранее установленный промежуток времени.

С температурой Т скорость 4002-46.jpg связана экспоненц. зависимостью

4002-47.jpg

Величину С обычно представляют как4002-48.jpg- постоянная Больцмана, а 4002-49.jpgэнергия активации ползучести.4002-50.jpgявляется частью свободной Гиббса энергии4002-51.jpg изменение энтропии ползучести.

С учётом эмпирич. зависимостей4002-52.jpgдля относительно низких Т и высоких4002-53.jpg

4002-54.jpg

Характер зависимости4002-55.jpgот Т указывает на то, что П. м. является термически активируемым процессом, конкретный механизм к-рого зависит от свойств материала, температуры и напряжений. При низких Т, когда диффузия подавлена, одним из таких процессов в крис-таллич. материалах (прежде всего, в металлических и керамических) может быть преодоление сопротивления движению дислокаций со стороны периодич. по-тенц. поля кристаллич. решётки (т. н. внутр. напряжений sВH Пайерлса - Набарро). Перемещение дислокаций в этом случае из одного положения в другое осуществляется не одновременно по всей её длине, а путём образования перегибов и их движения вдоль дислокации. При термич. активации перемещение дислокаций происходит при4002-56.jpgменьших чем4002-57.jpgП. м. с таким механизмом наблюдают при Т < 0,2 Tпл. Величина4002-58.jpg для металлов составляет 20-75 кДж/моль, т. е.4002-59.jpgизменяется с температурой незначительно.

При Т от 0,2 до 0,5 Гпл4002-60.jpgопределяется тем, что скольжение дислокаций тормозится др. дислокациями, к-рые пронизывают плоскости скольжения. Пересечение дислокаций также термически активируемый процесс, связанный с образованием стяжек на расщеплённых дислокациях (степень расщепления зависит от энергии дефектов упаковки и величины4002-61.jpgдействующих на дислокациях). В этой же области температур препятствия скольжению дислокаций могут преодолеваться путём поперечного скольжения. Переход расщеплённых дислокаций с одной плоскости на другую в результате поперечного скольжения также требует термич. активации процесса стяжки дефекта упаковки расщеплённых дислокаций. В изложенных случаях зависимость 4002-62.jpg от 4002-63.jpgи дописывается выражением (8), в к-ром акти-вац. объём и предэкспоненц. множитель зависят от конкретного атомного механизма возврата. При Т > 0,5 Тпл скорость П. м. зависит от диффузионных процессов возврата. Если последний осуществляется путём переползания дислокаций от мест, где они застопорены (поля напряжений др. дислокаций и их образований, границы зёрен и пр.), то 4002-64.jpg описывается выражением

4002-65.jpg

Здесь4002-66.jpgчастота колебаний атомов, s - вектор Бюргерса дислокаций, М - число источников дислокаций, 4002-67.jpg энергия активации ползучести для металлов, к-рая совпадает с энергией активации самодиффузии.

Известны также дислокац. модели, в к-рых процессом, ограничивающим скорость ползучести, является диффузия точечных дефектов от порогов на винтовых дислокациях. Они приводят 4002-69.jpg к зависимости от Т и4002-68.jpgв виде (8).

При предплавильных темп-pax и напряжениях 4002-70.jpg < 4002-71.jpgнаблюдают т. н. диффузионную П. м.4002-72.jpg к-рая описывается выражением вида (9) при h = 1. Такая П. м. осуществляется без участия дислокаций и связана с направленным диффузионным переносом атомов в поле градиента приложенных напряжений, что приводит к изменению формы материала. В частности, при одноосном напряжении поликристаллич. материала возникает градиент концентрации вакансий между продольными и поперечными границами зёрен. Потоку вакансий отвечает равный по величине и обратный по направлению поток атомов (рис. 2). Эти потоки приводят к удлинению зерна в продольном направлении и сокращению в поперечном. Изменение формы зёрен сопровождается самосогласованным диффузионно-вязким течением по границам зёрен, что обеспечивает сохранение сплошности материала.

Рис. 2. Схематическое изображение потока атомов к поперечным границам (сплошные стрелки) и встречного потока вакансий к продольным границам (пунктирные стрелки) в зерне, к которому приложены напряжения.

4002-73.jpg


Диффузионная П. м. (т. н. Херринга - Набарро - Лифшица ползучесть) имеет пост. скорость и вызывает малую деформацию. Переползание неск. дислокаций в объёме зерна приводит к более высокой скорости течения, чем чисто диффузионный механизм П. м. Скорость диффузионной П. м. зависит от температуры и напряжений

4002-74.jpg

Здесь b - межатомное расстояние, d - линейный размер элементов структуры (в частности, зёрен), D и 4002-75.jpg коэф. и энергия активации объёмной самодиффузии. Если процесс диффузии осуществляется гл. обр. по границам зёрен и зёрна мелкие, а температуры ниже пред-плавильных, но более 0,5 Т, то диффузионная П. м., наз. ползучестью Кобла, определяется диффузией по границам зёрен:

4002-76.jpg (12)

где V - атомный объём,4002-77.jpg- эфф. ширина границы, по к-рой идёт диффузия. Диффузионная П. м.- осн. механизм, к-рым осуществляется спекание дисперсных порошков. Этот вид П. м. является аккомодац. механизмом снижения локальных концентраций напряжений, возникающих при ползучести.

4002-78.jpg

Рис. 3. Карта механизмов деформации при ползучести вольфрама (средняя величина зёрен 10 мкм).

Разнообразие механизмов деформации и зависимость их вклада в общую деформацию от величин Т и4002-79.jpgдля конкретных материалов наглядно иллюстрируются т. н. картами механизмов деформации (рис. 3), на к-рых проводят кривые, отвечающие пост. скорости ползучести, к-рые определяют экспериментальным или расчётным путями.

Ускоренная ползучесть и разрушение. П. м. на стадии III часто может занимать половину и более общего времени ползучести от нагружения и до разрушения. На ней накапливается значительная (иногда и большая) часть деформации. На стадии III, когда идёт ускоренный процесс П. м., кинетика деформации не описывается единой зависимостью. На нач. этапах, когда скорость eIII превышает на 10-20 % 4002-80.jpg деформация

4002-84.jpg

при больших скоростях 4002-81.jpg величина деформации становится равной:

4002-82.jpg

Здесь К, N p М - постоянные, к-рые зависят от материала и увеличиваются при повышении Т и4002-83.jpg

Ускоренную стадию наблюдают и в случае сжатия, когда сечение испытываемого объекта не уменьшается, а увеличивается. Установлено, что коэф. деформац. упрочения4002-85.jpgна стадии 4002-86.jpgне изменяется, а остаётся таким же, как на стадии4002-87.jpg Однако резко изменяется скорость возврата -r. Для 4002-88.jpg и p - постоянные, зависящие от материала и режима испытаний. Имеется прямопропорц. связь между изменением скорости возврата и скорости ползучести на стадии4002-89.jpg

Если прервать проведение испытаний П. м. на первом этапе стадии III и провести отжиг, то свойства материала восстанавливаются. При переходе ко второму этапу стадии III П. м., кинетика к-рого описывается выражением (14), происходит необратимая повреждённость материала. Экспериментально для мн. материалов установлено постоянство произведения4002-90.jpg 4002-91.jpg - время до разрушения).

Микроструктурные исследования разл. материалов в процессе П. м. выявили многообразные проявления дислокац. скольжения (прямолинейные, волнистые, поперечные следы скольжения, складки у стыков зёрен, полосы сброса). Установлено, что вблизи границ зёрен действует большее число систем скольжения, чем в их объёме. Вдоль границ зёрен возникают ступеньки, наблюдается миграция границ, в объёме зёрен образуются малоугловые субграницы, приводящие к фрагментации (полигонизации) исходных зёрен, увеличивается разориентировка между образовавшимися субзёр-нами. Анализ наблюдаемых изменений микроструктуры показывает, что ползучесть кристаллич. материалов является гл. обр. результатом дислокац. деформации. Термич. возврат также связан с перераспределением и аннигиляцией дефектов кристаллич. строения - линейных и точечных.

Стадия4002-92.jpgП. м. оканчивается разрывом материала. Разрыв является лишь завершением процесса разрушения, к-рый протекает на всём или почти всём протяжении высокотемпературной П. м. Уже на стадии4002-93.jpg обнаруживается образование несплошности материала, сопровождаемое уменьшением его плотности. На стадии II на границах зёрен выявляются поры и трещины, слияние к-рых друг с другом приводит к окончат. разрушению материала. Зародыши трещин и пор могут быть в материале до начала процесса ползучести либо образоваться в результате деформации. Рост пор осуществляется путём диффузии вакансий к ним, взаимного слияния пор и при несогласованности проскальзывания зёрен. Пути повышения сопротивления материалов такие же, как для повышения прочности при комнатных темп-pax. Это - упрочнение растворимыми добавками и создание структуры, содержащей дисперсные частицы вторых фаз. Трудностью при создании материалов с высоким сопротивлением П. м. является не получение необходимой структуры и фазового состава материала, а пх сохранение при высоких темп-pax длит. время.

Литература по ползучести материалов

  1. Физическое металловедение, 3 изд., т. 3, М., 1987, гл. 23;
  2. Розенберг В. М., Основы жаропрочности металлических материалов, М., 1973;
  3. Регель В. Р., Слуцк ер А. И., Томашевский Э. Е., Кинетическая природа прочности твердых тел, М., 1974;
  4. Зубарев П. В., Жаропрочность фаз внедрения, М., 1985;
  5. Чадек И., Ползучесть металлических материалов, пер. с чеш., М., 1987.

В. М. Розенберг

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что низкочастотные электромагнитные волны частотой менее 100 КГц коренным образом отличаются от более высоких частот падением скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тысяч кмилометров в секунду при 100 кГц до примерно 7 тыс км/с при 50 Гц.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution