к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Магнитные полупроводники

Магнитные полупроводники - вещества, к-рые сочетают в себе полупроводниковый тип электропроводимости с магн. упорядочением. Среди М. п. имеются материалы с разл. типами магн. упорядочения - ферромагнитным, антиферромагнитным, геликоидальным и т. д. (см. Магнитная атомная структура ).К этому классу веществ относятся также нек-рые спиновые стёкла.

Характеристики магнитных полупроводников

Соединение

Тип магн. упорядочения

Кристаллич.

структура

Постоянная ре-щётки, А

TC, к

CdCr2S4

ФМ

шпинель

10,24

84,5

CdCrSe4

ФМ

"

10,75

130

HgCr2Se4

ФМ

"

10, 75

106

СuСr23Вr2

ФМ

"

10.4

274

ZnCr2Se4

ГАФ

"


20

HgCr2S4

ГАФ

"


60

ZnCr2S4

СФ

"


18

EuO

ФМ

NaCl

5, 141

67

EuS

ФМ

"

5,468

16

KuSe

АФМ

"

6, 135

4,6

EuTe

АФМ

"

6,598

9,6

Примечание. ФМ - ферромагнетик; АФМ- антиферромагнетик; Г АФ - геликоидальный антиферромагнетик; СФ - слабый ферромагнетик.


Температура магнитных фазных переходов у магнитных полупроводников лежит, как правило, в диапазоне гелиевых (4,2К) и азотных (~77,4 К) температур, хотя известны материалы с точкой Кюри Tс~300 К (напр., 2568-84.jpg ). Наиб. изученными являются М. п. типа ЕиХ, где'' X - О, S, Se, Те, и соединения со структурой шпинели типа АСr2Х4, где А - Сu, Cd, Zn, Hg, Fe, Co; X -S, Se, Те (см. табл.).

2568-85.jpg

Рис. 1. Зонная структура магнитных полупроводников.

2568-86.jpg

Рис. 2. Фазовая диаграмма магнитного 2568-87.jpg полупроводника

Электронный спектр магнитного полупроводника определяется 2 разнородными подсистемами - подвижными носителями заряда (электронами проводимости и дырками) и более локализованными электронами атомов переходных (или редкоземельных) металлов, содержащих недостроенные d- или f-оболочки. Ввиду этого электронный спектр М. п. не может быть описан (даже в нулевом приближении) простейшей двухзонной моделью (см. Полупроводники)и включает в себя, как правило, третью, т. н. d- или f-зону (рис. 1).

Магнитный полупроводник характеризуется, как правило, наличием т. н. непрямого обменного взаимодействия между d- или f-ионами. В решётке М. п. магн. ионы (для определённости d-ионы) разделены немагнитными и поэтому волновые функции d-электронов не перекрываются. Прямое обменное взаимодействие между ними отсутствует. Однако возникает непрямое взаимодействие, обусловленное тем, что волновые функции магн. ионов перекрываются через волновые функции немагн. ионов. Непрямой обмен приводит к заметному изменению магн. свойств М. п. при легировании. Так, при замещении в ферромагн. М. п.2568-88.jpg атомов Cd на атомы Zn вначале происходит уменьшение Тс, а затем ферромагн. упорядочение меняется на геликоидальное антиферромагнитное, причём этот переход происходит через состояние спинового стекла (рис. 2). Легирование 2568-89.jpg примесью In (донор) или Ag (акцептор) уменьшает или увеличивает Тс.

Кроме обменного взаимодействия между парамагнитными ионами через неподвижные немагнитные ионы в М. п. может иметь место обменное взаимодействие через подвижные носители заряда. Взаимодействие между подвижными носителями заряда и малоподвижными d-электронами приводит к зависимости электрич. свойств от магн. состояния М. п. и, наоборот, магн. свойств от концентрации носителей заряда в М. п. Так, в М. п. наблюдаются резкие (на неск. порядков) скачки проводимости при изменении температуры Т, резкое изменение Тc при изменении концентрации носителей в ходе легирования, резкие скачки магнетосопротивления, аномально большое отрицат. магнетосопротивление вблизи точки Кюри Тс.

Подвижность носителей в М. п. невелика по сравнению с обычными полупроводниками. Она лимитируется дополнит. механизмом рассеяния на неоднородностях и флуктуациях намагниченности (см. Рассеяние носителей заряда в твердом теле). Определение эффективной массы носителей с помощью эффекта Холла затруднено, т. к. из-за спонтанной намагниченности велик вклад аномальной составляющей (см. Холла эффект, Гальваномагнитные явления). Кроме того, наличие электрон-магнонного взаимодействия в М. п. приводит к изменению величины затухания спиновых волн в М. п. при пропускании тока.

2568-90.jpg

Рис. 3. Температурная зависимость края оптического поглощения в EuS (а) и HgCr2Se4 (б); 2568-91.jpg - ширина запрещённой зоны.


Характерной особенностью М.н. является т. н. гигантское красное смещение края оптич. поглощения при изменении температуры. Так, у 2568-92.jpg край поглощения сдвигается от 0,8 до 0,3 эВ при понижении Т от 300 до 4 К (рис. 3). Нек-рым М. п. свойственны явления фотомагнетизма (изменение магн. свойств при освещении). Так, в 2568-93.jpg при освещении изменяются магн. проницаемость, коэрцитивная сила, вид скачков Баркгаузена.

Многие особенности магнитных полупроводников, в частности аномалии кинетич. характеристик, иногда объясняют исходя из теоретич. предсказания существования в М. п. феронов - областей, в к-рых концентрация электронов проводимости и магн. момент отличаются от средних по кристаллу. Такие области могут быть, в частности, локализованы на примесях, вакансиях и др. дефектах. Наличие дефектов существенно влияет также на магнитокристаллич. анизотропию М. п. Так, чистый М. п. 2568-94.jpg практически изотропен, но при легировании и отжиге, к-рые меняют число примесей и вакансий, становится анизотропным, причём направление осей анизотропии и её степень можно изменять, меняя кол-во и тип примесей и вакансий.

Необычные свойства магнитных полупроводников делают их перспективными для создания ячеек памяти, для термомагн. и фото-магн. записи, для вращения плоскости поляризации эл--магн. излучения, в частности в диапазоне СВЧ. На магнитных полупроводниках реализованы р - п-переходы, Шоттки барьеры и др. структуры.

Литература по магнитным полупроводникам

  1. Метфессель 3., Маттис Д., Магнитные полупроводники, пер. с англ., М., 1972;
  2. Магнитные полупроводники шпинели типа CdCr2Se4, под ред. С. И. Радауцана, Киш., 1978;
  3. Нагаев Э. Л., Физика магнитных полупроводников, М., 1979;
  4. Магнитные полупроводники - халькогенидные шпинели, М., 1981;
  5. Магнитные полупроводники, под ред. В. Г. Веселаго, М., 1982.

В. Г. Веселаго

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution