к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Кипение

Кипение - процесс парообразования в жидкости, включающий рождение пузырьков пара, их рост, движение и взаимодействие; частный случай неравновесного фазового перехода 1-го рода.

Кипение вызывается перегревом жидкости, состояние к-рой попадает в область выше линии равновесия (бинодали, см. рис. к ст. Ван-деp-Bаальса уравнение), или понижением давления ниже его значения на линии равновесия жидкость - пар. На диаграмме состояния процесс К. описывается нек-рой траекторией или точкой внутри области метастабильного (перегретого) состояния (рис.), ограниченной с одной стороны бинодалью, с другой - спинодалью, границей термодинамич. устойчивости жидкости. При отрицат. давлении, соответствующем растяжению жидкости, наблюдается кавитация -, явление, родственное К.

Давление пара в квазиравновесном пузырьке2505-104.jpg уравновешивается давлением жидкости 2505-105.jpg и межфазным натяжением2505-106.jpg. В соответствии с Лапласа законом кри-тич. радиус пузырька (равновесного пузырька) равен

2505-107.jpg

Давление пара в пузырьке 2505-108.jpg связано с давлением на-сыщ. пара над горизонтальной поверхностью жидкости (давлением на бинодали) при той же температуре Кельвина уравнением. При 2505-110.jpg пузырьки схлопываются, при 2505-111.jpg - растут.

2505-109.jpg

Фазовая диаграмма воды: р - давление; Т - температура; К - критическая точка воды; 1 - бинодаль; 2 - спино-даль (область между 1 и 2 - область метастабильно-го, перегретого состояния); 3 - линия достижимого в опытах перегрева кипящей жидкости.


Рождение пузырька пара в объёме гомогенной жидкости происходит при преодолении энергетич. барьера, равного работе образования критич. пузырька:

2505-112.jpg

(ф-ла Гиббса). Энергетич. барьер может быть преодолен в тех областях жидкости, где возникают термодинамич. флуктуации её плотности. Частоту J рождения флуктуац. пузырьков описывает теория Фольмера - Зельдовича - Кагана. С хорошей точностью

2505-113.jpg

Интенсивное флуктуац. зародышеобразование в гомогенной жидкости развивается при высоких перегревах (напр., в воде при атм. давлении J=1010 м-3с-1, если T=578 К).

В объёме неочищенной, не лишённой примесей и растворенных газов жидкости и на границах с твёрдой фазой обычно имеются (или временно появляются) зоны предпочтит. рождения пузырьков. К таким центрам К. относятся как спонтанные флуктуационные, так и готовые, уже имевшиеся в жидкости (напр., пузырьки нерастворённого газа, газовые и паровые пузырьки в микротрещинах на неполностью смоченной поверхности стенок). При развитом К. готовые центры возобновляются за счёт захвата пара микроуглублениями (порами) на нагреваемой поверхности.

Центрами спонтанного кипения могут быть плохо смачиваемые участки (т. н. островки Френкеля) и поры на твёрдой поверхности, зоны повыш. концентрации легкокипящей компоненты (напр., образовавшейся при электролизе), области локального тепловыделения (напр., зоны протекания экзотермич. хим. реакций) или локального растяжения (центры кавитации). В центрах спонтанного К. работа образования критич. пузырька меньше, чем в др. точках объёма жидкости, поэтому активация центров К. наблюдается при более низких темп-pax перегрева - при состояниях жидкости, попадающих в область между линиями 1 и 3 на рис.

В квазистационарных режимах К. обычно обеспечивается готовыми центрами и перегрев выше линии бинодали невелик (~10 К). В нестационарных процессах существен вклад спонтанных центров К. При достаточно быстром переводе жидкости в метастабильное, перегретое состояние траектория процесса вскипания на фазовой диаграмме может приблизиться к спинодали 2 и осн. процессом становится гомогенное флуктуац. зародышеобразование; такой режим К. наз. ударным, парообразование при этом носит взрывной характер.

Пузырёк с радиусом 2505-114.jpg растёт со скоростью, определяемой подводом теплоты к жидкости через межфазную поверхность, а также диффузией легко кипящей компоненты (в растворах), вязкостью и инерц. силами. На ранней стадии роста пузырьков скорость ограничивается в первую очередь инерц. силами. Скорость 2505-115.jpg изменения радиуса определяется ф-лой Рэлея:

2505-116.jpg

где 2505-117.jpg - плотность жидкости. По мере роста пузырька основными становятся условия тепло- и массоподвода к межфазной поверхности, причём ограничение процессами переноса приводит к падению скорости с увеличением времени t развития пузырька: 2505-118.jpg (асимпто-тич. стадия роста пузырька). В нек-рых случаях теплоты перегрева жидкости достаточно для полного покрытия расхода энергии на парообразование. В таких режимах рэлеевская стадия роста пузырьков, описываемая (4), в однокомпонентных жидкостях продолжается до слияния пузырьков.

Различают объёмное и поверхностное кипение. При поверхностном кипении осн. источником жизнеспособных паровых пузырьков является слой жидкости, примыкающий к нагреваемой поверхности. Если осн. объём жидкости имеет температуру ниже равновесной температуры на бинодали (т. н. К. с недогревом), то пузырьки пара, образовавшиеся вблизи нагреваемой поверхности, попадая при мигрировании в холодные слои, схлопываются. В сильно недогретой жидкости пузырьки, формирующиеся на нагреваемой поверхности, не достигают отрывного размера вследствие конденсации пара в противоположной от нагревателя части пузырька. Объёмное К. происходит при перегреве во всём объёме жидкости или при понижении давления. В этом случае пузырьки рождаются во всём объёме жидкости или во фронте волны спада давления.

Рост пузырьков при кипении оказывает механич. (гидроди-намич.) воздействие на систему в целом. В частности, в замкнутом объёме перегретой жидкости по мере увеличения паросодержания растёт давление. В стеснённых дозвуковых стационарных потоках вскипающей жидкости (напр., в трубах) рост паросодержания вниз по течению сопровождается снижением давления, поэтому при истечении кипящей перегретой жидкости из щелей и сопел наблюдается эффект "запирания" - снижение расхода жидкости. Пузырьки пара при росте и схлопывании излучают акустич. энергию (шум К.). Быстрый рост давления при взрывном кипении может привести к разрушению конструкций (паровой взрыв). Пузырьки, всплывающие в гравитац. поле, вызывают дополнит. конвективные потоки, что способствует перемешиванию жидкости, а поверхностное К. эффективно возбуждает турбулентное движение пристеночного слоя жидкости.

Поверхностное кипение широко используется для интенсивного охлаждения поверхности (теплосъёма). Количеств. характеристикой эффективности теплосъёма служит коэф. теплоотдачи 2505-119.jpg, определяемый как отношение плотности теплового потока q к перепаду температуры 2505-120.jpg между нагретой поверхностью и жидкостью. При развитом стационарном К. температурой жидкости считают температуру на бинодали. С ростом перепада температур2505-121.jpg по мере развития К. коэф. теплоотдачи растёт 2505-122.jpg (показатель степени т меняется в пределах от 2 до 3). При достаточно высоком локальном паросодержании в пограничном слое жидкости пузырьки начинают взаимодействовать между собой, образуя паровые полости сложной формы.

При скорости стационарного отвода теплоты от поверхности нагревателя выше нек-рого макс. значения начинает проявляться неустойчивость встречных потоков жидкости и пара (неустойчивость Гельмгольца). В результате на нагревателе образуется плёнка пара, резко снижающая коэф.2505-123.jpg и поток q (кризис К.). Если паровой слой покрывает всю нагреваемую поверхность, то К. наз. плёночным. На границе пар - жидкость в этом случае возбуждаются поверхностные волны, на гребнях к-рых образуются крупные пузыри пара, к-рые затем отрываются. Переход от пузырькового К. к плёночному наз. первым кризисом К., обратный переход - вторым кризисом К. Второй кризис К. объясняется неустойчивостью межфазной границы пар - жидкость (неустойчивость Тейлора). В опытах с водой при атм. давлении и в условиях естеств. конвекции первый кризис К. наступает при 2506-1.jpg К (q=0,9 МВт/м2), второй - при 2506-2.jpg К (q=0,2 МВт/м2).

При независимом задании теплового потока (напр., при прохождении электрич. тока или радиац. обогреве) наблюдается неоднозначная зависимость 2506-3.jpg от q (гистерезис температуры), вызванная тем, что тепловой поток в условиях наступления первого кризиса К. больше, чем тепловой поток в условиях второго кризиса К.

В нестационарных режимах поверхностного К. с недогревом при значит. перегревах пограничного слоя жидкости переход к плёночному К. может произойти без стадии развитого пузырькового К. При ударном режиме К. темп-pa перехода к плёночному К. (термодинамич. кризис К.) вычисляется с помощью теории флуктуац. зародышеобразования.

Применение процесса кипения в науке и технике разнообразно. Его используют для увеличения поверхности испарения в опреснит. установках, визуализации треков элементарных частиц в пузырьковых камерах, в холодильной технике, процессах ректификации и т. д.

Литература по кипению

  1. Скрипов В. П., Метастабильная жидкость, М., 1972;
  2. Несис Е. И., Кипение жидкостей, М., 1973;
  3. Кутателадзе С. С., Накоряков В. Е., Тепло-массообмен и волны в газожидкостных системах, Новосиб., 1984.

П. А. Павлов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution