Рассмотрим стационарный поток однородных заявок без последействия. Пусть Pk(t) вероятность появления k заявок в интервале времени t. Эта вероятность зависит только от и не зависит от начала отсчета времени, от поступления заявок в предыдущих временных интервалах. Пусть к тому же поток является ординарным, т. е. Pk(dt) при k >1 бесконечно мала в сравнении с малым интервалом dt. Если обозначить через число заявок в единицу времени (интенсивность потока), то можно показать, что для такого простейшего потока
Формула (1) определяет распределение Пуассона. Для пуассоновского потока можно обнаружить, что промежутки времени T между поступлениями заявок распределены по экспоненциальному (показательному) закону
(вероятность, что промежуток времени не превышает t).
Естественно, что входной поток может описываться не только пуассоновским, но и другими распределениями (Эрланга, гиперэкспоненциальным и т.п.).
Аналогичная ситуация имеет место и для выходного потока. Чаще всего используется показательный закон распределения времени обслуживания:
где m =1/tобс - интенсивность обслуживания (среднее число обслуживаний в единицу времени), tобс - среднее время обслуживания одной заявки.
Пусть S - множество состояний системы и P(l, t+t / i, t) - вероятность того, что система, находившаяся в момент t в состоянии i, в момент t+t окажется в состоянии l. Для марковской системы (она привлекает нас отсутствием последействия) можно записать уравнения Чепмена-Колмогорова:
Если под состояниями понимать число заявок, то эти уравнения можно записать в виде:
Рассмотрим случай разомкнутой системы с простейшим входным потоком интенсивности l и одним каналом обслуживания с интенсивностью m.
Возьмем интервал времени [t, t+dt]. В силу разомкнутости системы множество состояний системы
Попробуем оценить вероятности перехода между состояниями с учетом, того, что вероятность появления заявки в этом интервале времени равна l dt и вероятность завершения обслуживания предшествующей заявки равна m dt .
Очевидно, что вероятность перехода S0ЮS1 равна l dt и вероятность перехода S1ЮS0 равна 1 - l dt. Если в системе присутствовали k>0 заявок (состояние Sk), то для перехода в состояние Sk-1 необходимо, чтобы заявка была обслужена и не поступило новой заявки; отсюда вероятность перехода SkЮSk-1 равна
m dt (1 - l dt) @ m dt. Для перехода из состояния Sk в состояние Sk+1 необходимо, чтобы поступила новая заявка, но ни одна из ранее поступивших не была обслужена: вероятность перехода SkЮSk+1 равна
l dt(1-mdt) @ l dt. Вероятность для системы остаться в том же состоянии составит 1 - (l+m)dt.
Тогда из (5) имеем
Ограничимся рассмотрением установившегося режима, признаком которого является существование предела
В этом случае (6) приведется к бесконечной системе линейных алгебраических уравнений с трехдиагональной матрицей коэффициентов
Тогда
и
Обратите внимание на требование r < 1. Если это требование нарушено, то ни о каком установившемся режиме не может быть речи: очередь растет неограниченно (средняя продолжительность обслуживания больше среднего интервала времени между заявками).
Теперь обратимся к аналогичной замкнутой системе с числом заявок, не превышающим n. Здесь система уравнений (6) приведется к конечной системе
которая для установившегося режима дает конечную систему линейных алгебраических уравнений
Решение этой системы
Полученные выше решения можно обобщить на случай многоканальных систем c ограниченным ожиданием. Так, если СМО имеет N однотипных каналов обслуживания (интенсивность обслуживания равна Nm), m мест в очереди и к тому же число n возможных заявок превышает N+m (в противном случае нет проблем), то возникает система
Умение найти значения Pk дает возможность отыскать и ряд основных характеристик СМО.