к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Теплозащита

Теплозащита - средство для обеспечения нормального температурного режима в установках и аппаратах, работающих в условиях подвода к поверхности значит. тепловых потоков (q>> Вт/см2), когда применение простой теплоизоляции становится невозможным.

Методы теплозащиты l. Конвективное охлаждение - подходящие к тонкой металлам, обшивке тепловые потоки отводятся в охлаждающую жидкость или газ, к-рые протекают с другой стороны обшивки.

2. Заградит. охлаждение - через отверстие или щель вблизи охлаждаемой поверхности в направлении потока подаётся струя холодного газа. Заградит. эффект струи уменьшается по мере её перемешивания с горячим газом.

3. Плёночное охлаждение - аналогично заградительному, с той разницей, что через щель или отверстие подаётся жидкий охладитель, образующий на охлаждаемой поверхности защитную плёнку. Защитный эффект уменьшается по мере испарения плёнки и ее разбрызгивания.

4. Пористое охлаждение - жидкий или газообразный охладитель подаётся через пористую или перфорированную поверхность аппарата. При охлаждении жидкостью расход её подбирается т. о., чтобы жидкость испарялась внутри пор.

5. Т. с помощью теплопоглощающей оболочки - подходящее к поверхности тепло поглощается за счёт теплоёмкости достаточно толстой оболочки при повышении температуры последней. Большой эффект достигается при дополнит. использовании теплоты плавления и нагревания жидкой фазы материала, а также теплоты хим. разложения. Однако в этих случаях необходимо заключать тепло-поглотитель в жёсткую металлич. оболочку.

6. Отвод тепла радиацией - проблема Т. решается посредством создания материала, выдерживающего высокую температуру, при к-рой всё подводимое тепло может излучаться в пространство; при этом, согласно Стефана -Больц-мана закону излучения, излучаемый поверхностью тепловой поток 5014-1.jpg где e - суммарная испускат. способность внеш. покрытия, s0 - постоянная Стефана, a Tw - абс. темп-pa поверхности. Сложность практич. применения данного метода Т. связана с тем, что при высокой температуре металлы, из к-рых изготовляется излучающая оболочка, окисляются кислородом воздуха. Для борьбы с окислением внеш. поверхность 2 (рис. 1) покрывается тонким слоем покрытия 1, устойчивого к окислению. Между излучающей поверхностью и частями конструкции 4 помещается лёгкая изоляция 3. Этот способ может применяться лишь для Т. внеш. поверхностей аппаратов.

7. Т. с помощью разрушающихся (уносимых) покрытий осуществляется за счёт поглощения большого кол-ва тепла в процессе уноса массы этих покрытий. Поглощаемое тепло идёт на нагрев материала, а также на разл. фазовые и хим. превращения. При применении методов 4 и 7, а также частично методов 2 и 3 возникает дополнит. заградит. эффект в результате вдува газообразного охладителя в пограничный слой, что приводит к снижению подходящего к поверхности теплового потока. При не слишком больших расходах газообразного охладителя Gu снижение теплового потока q=q0-b(I00 - Iw)Gu где q0 - тепловой поток к непроницаемой поверхности, I00 - энтальпия торможения, a Iw - энтальпия внеш. газа при температуре стенки. Коэф. вдува b= a(Me/Mu)b, где Ме и Mu -молекулярные веса внеш. и вдуваемого газов, причём коэф. а и b зависят от геометрии тела и режима течения в пограничном слое (л а м и н а р н ы й или т у p б у л е н т н ы й).

5014-2.jpg

Метод Т. с помощью разрушающихся покрытий - пассивный и поэтому обладает повыш. надёжностью по сравнению с активными методами Т., для к-рых требуются спец. системы подачи охладителя по заданной программе. Эффективность разрушающихся теплозащитных покрытий измеряется т. н. эфф. энтальпией Iэф = q0 /G (где G - масса, уносимая с единицы поверхности в единицу времени), характеризующей кол-во тепла, необходимое для уноса единицы массы материала.

Разрушающиеся теплозащитные покрытия подразделяются на классы в соответствии с механизмом разрушения. а) П л а в я щ и е с я п о к р ы т и я - разрушаются в результате перехода материала из твёрдого состояния в жидкое. Образующаяся на поверхности материала плёнка расплава может частично или полностью переходить в газообразное состояние. Кристаллич. материалы (напр., металлы) характеризуются наличием фиксированной температуры плавления и сравнительно малой вязкостью расплава. Жидкая плёнка на поверхности этих материалов имеет незначит. толщину и почти не перегревается, из-за чего расплав практически не испаряется. Аморфные (стеклообразные) материалы при нагревании постепенно переходят из твёрдого состояния в жидкое в связи с тем, что их вязкость представляет собой экспоненциальную функцию температуры 5014-3.jpg где С1 и С2 - постоянные. Жидкая плёнка на их поверхности обладает большой вязкостью, благодаря чему доля испарения y в нек-рых случаях -может приближаться к единице. Iэф плавящихся покрытий равна: 5014-4.jpg где с - уд. теплоёмкость материала, r и l-соответственно скрытые теплоты плавления и испарения (для аморфных материалов r = 0), Т0 - темп-pa непрогретого материала, б) С у б л и м и р ую щ и е п о к р ы т и я - разрушаются в результате фазового перехода из твёрдого состояния непосредственно в газообразное- сублимации. Iэф таких покрытий равна: Iэф = с(Tw - Т0) + l + b (Iоо - Iw). Темп-pa поверхности Tw заранее не известна и определяется из совместного решения ур-ния баланса энергии на поверхности и ур-ния Кнудсена - Ленгмюра для скорости сублимации, в) Р а зл а г а ю щ и е с я п о к р ы т и я-разрушаются в результате хим. реакции термич. разложения. Для них IЭф рассчитывается по той же ф-ле, что и для сублимирующих покрытий, с заменой скрытой теплоты испарения на тепловой эффект реакции разложения. Для определения температуры поверхности совместно рассматриваются ур-ние баланса энергии и кинетич. ур-ние реакции термич. разложения. Пример разлагающихся покрытий - термопласты: фторопласт, полиметилметакрилат, полиэтилен и др. г) Т е п л о з а-щ и т н ы е п о к р ы т и я, разрушающиеся в результате хим. взаимодействия с внеш. потоком. Унос массы этих покрытий происходит гл. обр. за счёт гетерогенных хим. реакций между материалом покрытия и набегающим потоком газа, в результате к-рых образуются газообразные соединения. Для расчёта скорости разрушения покрытий данного класса обычно пользуются т. н. безразмерной скоростью уноса массы5014-5.jpg , к-рая определяется протекающими хим. реакциями и слабо изменяется в широком диапазоне внешних условий.

5014-6.jpg

Большинство применяемых на практике теплозащитных покрытий - довольно сложные композиции, В процессе уноса массы таких покрытий протекают разл. физ--хим. превращения как внутри материала, так и на его поверхности и в газообразном пограничном слое. Однако, как правило, к--л. процесс - определяющий. Напр., в случае покрытия из стеклопластика, состоящего из стеклянных волокон и органич. связки (рис. 2), по мере прогрева глубинных слоев материала l при нек-рой температуре начинается тер-мич. разложение органич. связки (коксование). Коксование протекает в области 2 и полностью заканчивается до начала плавления стекловолокна. Образующиеся при коксовании газы вырываются наружу, а твёрдый остаток - кокс - вместе со стекловолокном располагается непосредственно под поверхностью в слое 3. На поверхности покрытия стекловолокно плавится и образует жидкую плёнку 4, в к-рой содержатся твёрдые частицы кокса. Пары стекла вместе с газообразными продуктами разложения органич. связки и продуктами окисления частичек кокса поступают в газообразный пограничный слой 5. Для стеклопластика определяющим является процесс плавления и испарения наполнителя из стекла, поэтому данный материал может быть отнесён к классу плавящихся покрытий.

5014-7.jpg

Выбор конкретного способа Т. производится с учётом особенностей работы установки или аппарата. В качестве примера на рис. 3 приведена сравнит. весовая характеристика разл. методов Т. искусств. спутника Земли, входящего в атмосферу по баллистич. траектории. По оси ординат отложен полный вес Т. Р, а по оси абсцисс - баллистич. коэф. s = m/CDS, где m - масса спутника, CD - его коэф. сопротивления, a S-площадь поперечного сечения. Кривая 1 характеризует пористое охлаждение, кривая 2- Т. с помощью плавящегося покрытия, для к-рого y = 0,25, а кривая 3 -Т. с помощью сублимирующего покрытия.

Н. А. Анфимое.

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 25.09.2020 - 21:27: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
25.09.2020 - 21:26: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Николаевича Боглаева - Карим_Хайдаров.
25.09.2020 - 19:02: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
25.09.2020 - 18:58: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
25.09.2020 - 17:15: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
25.09.2020 - 17:00: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Проблема народного образования - Карим_Хайдаров.
25.09.2020 - 16:59: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
25.09.2020 - 10:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2020 - 20:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> КОМПЬЮТЕРНО-СЕТЕВАЯ БЕЗОПАСНОСТЬ ДЛЯ ВСЕХ - Карим_Хайдаров.
24.09.2020 - 20:00: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА - Карим_Хайдаров.
24.09.2020 - 19:57: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
24.09.2020 - 06:24: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution