Спектральная плотность оптической величины, характеризующей излучение (напр., потока излучения, силы света),- отношение величины dX, взятой
в бесконечно малом спектральном интервале,
содержащем данную длину волны
, к ширине этого интервала:
С. п. может быть образована не только в шкале длин волн,
но и в др. спектральных шкалах: частот f - с обозначением Xf, волновых
чисел
, их логарифмов. Зависимость С. п. фотометрич. величины
от длины волны
называют спектральным распределением фотометрич. величины и обозначают.
Форма кривой, изображающей спектральное распределение, и положение максимума
на ней зависят от выбранной спектральной шкалы. Так, с учётом функциональной
связи(с - скорость света) между С. п. рассматриваемого оптич. излучения (напр.,
излучения чёрного тела при заданной теми-ре) в шкалах частот Хfи
С. п. в шкале длин волн
существует соотношение
При этом длина волны,
на к-рую приходится максимум функции
, и частота fm, на к-рую приходится максимум функции,
соответствуют разным спектральным компонентам:.
Поэтому не имеет смысла судить о максимуме энергии в спектре по кривой
спектрального распределения. В отличие от С. п. значение спектральной
чувствительности
приёмника излучения в выбранной спектральной точке не зависит от выбора
спектральной шкалы. Следовательно, совпадение максимумов функций
и не
является критерием наилучшего энергетич. согласования излучателя и приёмника.
Таким критерием является лишь макс. значение инварианта относительно спектральных
шкал:
Понятия С. п. и спектрального распределения применяются не только в
фотометрии ,но и в радиоэлектронике и акустике для описания спектров источников,
сигналов и шумов, в радиометрии ионизирующих излучений, в теории
переноса излучения (астрофизика, теплофизика, физика плазмы) и т.
п.
Литература по спектральной плотности оптической величины
Гершун А. А., Избранные труды по фотометрии и светотехнике, М., 1958;
Гуревич М. М., Фотометрия. Теория, методы и приборы, 2 изд., Л., 1983;
Сапожников Р. А., Теоретическая фотометрия, 3 изд., М., 1977.
Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет) При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов. Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.