Светодальномер - прибор для измерения расстояний по времени прохождения его оптич. излучением (светом). С. содержит источник оптич. излучения, устройство управления его параметрами, передающую и приёмную системы, фотоприёмное устройство и устройство измерения временных интервалов.
С. разделяются на импульсные и фазовые в зависимости от методов определения времени прохождения оптич. излучением расстояния до объекта и обратно (см. Светодальнометрия ).Импульсные методы (методы с непосредств. измерением времени распространения) позволяют получать достаточно высокую точность (единицы и десятки см) только в случае усреднения большого числа измерений.
В импульсных С. источником излучения обычно являются твердотельные и полупроводниковые лазеры, работающие в ближнем ИК-диапазоне (0,81,06 мкм), излучение к-рых формируется в виде коротких импульсов. Медленно меняющиеся расстояния измеряются с помощью одиночных импульсов; при быстро меняющихся расстояниях применяется непрерывно-импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50-100 Гц, полупроводниковые - до 104-105 Гц. Короткие импульсы (20-40 нс) твердотельных лазеров формируют в режиме модуляции добротности с помощью различного рода оптических затворов. В полупроводниковых лазерах генерация коротких импульсов мощностью до сотен Вт осуществляется путём формирования коротких импульсов тока накачки.
Импульсные С. используются в основном для измерения расстояний (сотни м - десятки км) до диффузно-рассеивающих объектов с точностью до единиц м.
В фазовых С. в качестве источников излучения применяются, как правило, светодиоды, непрерывные газовые лазеры (Не - Ne, He - Cd, CО2) либо полупроводниковые лазеры с мощностью излучения в единицы мВт.
Обычно модуляция гармонич. сигналом оптич. излучения газовых лазеров осуществляется внеш. электрооптич. или акустооптич. модуляторами на частотах до десятков и сотен МГц, а модуляция полупроводниковых излучателей - током накачки. Фазовые С. обеспечивают дальность действия при работе с оптич. отражателями на объекте от единиц до десятков км, а при диффузном отражении от объектов - до сотен м.
В качестве фотоприёмников чаще всего применяются фотодиоды или фотоумножители. Из-за нестабильности электронных элементов фазовый сдвиг сигналов за время измерений подвергается дрейфу. Для его учёта в С. включается линия оптич. короткого замыкания - система зеркал и призм или световодов, по к-рой модулиров. свет направляется из передатчика в приёмник, минуя измеряемую дистанцию. Измерение разности длин внеш. и внутр. дистанции позволяет учитывать и компенсировать ошибку за счёт дрейфа масштабной частоты. Большинство совр. С. построено по гетеродинной схеме с измерением разности фаз на низкой промежуточной, частоте, что позволяет автоматизировать процесс измерений с использованием цифровых методов. При этом разность фаз между опорным и измерит. сигналами представляется в виде последовательности импульсов, число к-рых подсчитывается.
Совр. С. по назначению и техн. параметрам условно можно разделить на три группы: для измерения больших расстояний (до 50 км) с ошибкой измерения 5-20 мм; для измерения малых расстояний (до 1015 км) с ошибкой измерения 5 10 мм; прецизионные С. с ошибкой измерения 0,3-0,5 мм и дальностью до 0,1-1 км. Нек-рые совр. С. представляют собой светодальномерные насадки на теодолит, что расширяет круг решаемых прибором задач.
Объединение дальномерной и угломерной частот в единую конструкцию выделило отд. группу приборов - электронные тахеометры, представляющие собой комбинации электронного теодолита, свето дальномера и микропроцессора. В отд. класс выделяются двухволновые С., позволяющие измерять расстояния (с коррекцией влияния атмосферы) дисперсионным методом определения среднего вдоль трассы показателя преломления воздуха.
Ю. В. Попов, В. Б. Волконский