к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Разрывы магнитогидродинамические

Разрывы магнитогидродинамические - тонкие переходные области, в к-рых происходит резкое изменение (скачок) магнитогидродинамич. (МГД-) параметров (давления, энтропии, плотности, скорости течения, магн. поля) или их производных. Р. м. возникают при столкновении двух потоков, обтекании тел (напр., обтекании планет солнечным ветром), взрывах (вспышках новых и сверхновых звёзд), при сжатии газа поршнем, внезапном включении эл--магн. поля, изменении (исчезновении) начальных или граничных условий и т. д. Р. м. распространяются в идеальном газе (жидкости, плазме) с высокой (строго говоря, бесконечной) электрич. проводимостью в присутствии магн. поля. Если пренебречь эффектами неидеальности вещества (вязкостью, теплопроводностью, джоулевым нагревом), то толщина переходной области равна нулю, т. е. Р. ы. сосредоточены на поверхностях.

Различают слабые и сильные Р. м. Слабым наз. разрыв, на поверхности к-рого имеет место скачок к--л. производных МГД-параметров как функций координат при непрерывности самих параметров. Поверхности, на к-рых возможен слабый Р. м., являются харак-теристич. поверхностями ур-ний идеальной магнитной гидродинамики. Существует 7 типов слабых Р. м.: энтропийный, 2 альвеновских, 2 быстрых и 2 медленных магнитозвуковых. Слабые Р. м. движутся относительно среды со скоростью соответствующих линейных волн.

Р. м. наз. сильным, если на его поверхности имеет место скачок одного или неск. МГД-параметров. Сильный Р. м. может образоваться при пересечении слабых разрывов одного типа. Граничные условия на поверхности сильного Р. м., связывающие значения МГД-параметров по разные стороны разрыва, получаются из законов сохранения массы, импульса и энергии и ур-ний Максвелла в интегральной форме. В системе отсчёта, где сильный Р. м. покоится, они в изотропном случае4025-117.jpg имеют вид:

4025-118.jpg

Здесь r, r и 4025-119.jpg- соответственно давление, плотность и уд. внутр. энергия вещества;4025-120.jpgи 4025-121.jpg - нормальная и тангенциальная (относительно поверхности разрыва) компоненты соответственно скорости вещества и напряжённости магн. поля; скобки {f}обозначают скачок параметра f при переходе через поверхность разрыва, т. е. разность (f2 - f1) значений этого параметра за фронтом разрыва f2 и перед ним f1.

Различают 4 типа сильных Р. м.: тангенциальный, контактный, альвеновский и ударные волны. Для тангенциального разрыва поток вещества через поверхность разрыва отсутствует (uh = 0), а магн. поле параллельно поверхности разрыва (Нп =0). На тангенциальном Р. м. плотность r и тангенциальная скорость uт имеют скачки произвольной величины, а скачки давления p и магн. поля Hт связаны соотношением:

4025-122.jpg

В анизотропном случае, когда4025-123.jpg скачок произвольной величины может иметь продольное давление Р||, а скачки поперечного давления p^ и магн. поля4025-124.jpg связаны соотношением (2).

Тангенциальным разрывом является поверхность раздела двух жидкостей с разл. термодинамич. параметрами, движущимися относительно друг друга с нек-рой скоростью, параллельной границе раздела. Примером тангенциального Р. м. служит магнитопау-за как граница раздела между магнитосферой и солнечным ветром. На тангенциальном разрыве обычно развивается неустойчивость Кельвина - Гельмгольца с инкрементом

4025-125.jpg

Она может быть застабилизирована достаточно сильным магн. полем4025-126.jpg

Контактный разрыв покоится относительно среды (un = 0), однако магн. поле имеет нормальную компоненту (4025-127.jpg0). На поверхности контактного Р. м. непрерывны давление р, магн. поле Н, скорость uт, а плотность r и др. термодинамич. параметры могут испытывать произвольные скачки. В анизотропном случае,4025-128.jpg, давление и тангенциальная компонента магн. поля могут иметь на контактном разрыве скачки, удовлетворяющие соотношениям:

4025-129.jpg

4025-130.jpg

На альвеновском (вращательном) разрыве плотность среды не меняется, {r} = 0, однако имеется поток вещества через поверхность разрыва 4025-131.jpg Альвеновский Р. м. движется относительно этой поверхности впереди и позади неё со скоростью альвеновской волны 4025-132.jpgНа альвеновском разрыве полная напряжённость магн. поля 4025-133.jpg непрерывна, однако сам вектор Н поворачивается вокруг нормали к поверхности разрыва на нек-рый угол. Термодинамич. параметры при переходе через альвеновский разрыв непрерывны, {s} = О, {р} = 0, а скачки тангенциальных компонент скорости и магн. поля связаны ф-лой:

4025-134.jpg

В случае анизотропного давления (4025-135.jpg) на альвеновском (вращательном) разрыве плотность и внутр. энергия, а также магн. поле могут тоже испытывать скачки, к-рые связаны соотношениями:

4025-136.jpg

Разрывы, движущиеся относительно среды4025-137.jpg на к-рых плотность среды испытывает скачок, наз. ударными волнами. На ударных волнах возрастает энтропия,4025-138.jpgа также практически для

всех видов веществ растут давление и плотность:

4025-139.jpg

Ударные волны плоско поляризованы, т. е. векторы H1, Н2 и нормаль к поверхности разрыва лежат в одной плоскости. Скорость ударной волны относительно вещества перед ней зависит от её амплитуды, т. е. от величины скачка к--л. МГД-параметра, напр. {р}. При стремлении амплитуды ударной волны к нулю её скорость стремится к скорости линейных магнитозвуковых волн, быстрой uf или медленной us. Зависимость между значениями термодинамич. параметров перед волной и позади неё наз. ударной адиабатой или адиабатой Гюгоньо. Различают параллельные, перпендикулярные и косые ударные волны.

Эволюционность и устойчивость разрывов магнито-гидродинамических. Р. м., устойчивые относительно распада на неск. разрывов или нестационарных течений, наз. эволюционными. Любое бесконечно малое возмущение эволюц. разрыва приводит (по крайней мере на достаточно малых промежутках времени) к малым изменениям МГД-параметров разрыва. Возмущения эволюц. разрыва могут нарастать во времени по экспоненц. закону (как expgt с положит. инкрементом g), что свидетельствует о неустойчивости такого разрыва, однако в течение времени4025-140.jpgвозмущение останется малым. Введение понятия эволюционности Р. м. связано с возможностью построения нестационарных решений с заданными нач. условиями. Если линеаризованная задача о взаимодействии малых возмущений с разрывом не имеет решения либо имеет не единств. решение, что указывает на неправомерность исходного предположения о малости амплитуд возмущений в течение малого, но конечного времени, то разрыв наз. неэволюционным. Неэволюц. разрыв в течение короткого времени (в модели идеальной магн. гидродинамики - мгновенно) распадается на неск. устойчивых разрывов или может перейти в нестационарное течение. Альвеновские, тангенциальные и контактные Р. м. относятся к классу эволюционных. Для ударных волн условие эволюционности накладывает ограничения на скорость разрыва относительно среды. В частности, скорость быстрой ударной волны относительно среды перед ней должна быть больше скорости быстрой магнитозвуковой волны в среде uf1, а скорость относительно среды за ней - меньше скорости быстрой магнитозвуковой волны uf2.

При падении волн на сильный разрыв коэф. отражения может превысить единицу, т. е. волна усиливается в процессе отражения.

Структура разрывов. При учёте неидеальности вещества (вязкости, теплопроводности, джоулева нагрева) поверхность сильного разрыва размывается в узкий переходный слой, в к-ром МГД-параметры изменяются быстро, но непрерывно. Характер изменения параметров среды в переходной области наз. структурой разрыва. Толщина переходной области для слабой ударной волны часто превышает длину свободного пробега частиц. Это позволяет использовать ур-ния магн. гидродинамики с учётом малых диссипативных факторов для исследования структуры разрыва, к-рая часто описывается монотонной функцией. В разреженной плазме парные кулоновские столкновения могут быть весьма редкими и структура разрыва будет определяться коллективными процессами, а толщина переходной зоны может быть существенно меньше длины свободного пробега (напр., бесстолкновителъные ударные волны).

Литература по магнитогидродинамическим разрывам

  1. Куликовский А. Г., Любимов Г. А., Магнитная гидродинамика, М., 1962;
  2. Plasma Electrodynamics, v. 2, Oxf., 1975;
  3. Баранов В. Б., Краснобаев К. В., Гидродинамическая теория космической плазмы, М., 1977;
  4. Арцимович Л. А., Сагдеев Р. 3., Физика плазмы для физиков, М., 1979;
  5. Половин Р. В., Демуцкий В, П., Основы магнитной гидродинамики, М., 1987.

Н. С. Ерохин, О. Г. Онищенко

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution