Плотность состояний - число возможных физически неэквивалентных энергетич. состояний в малом
интервале энергии
отнесённое к ширине интервала
где - число состояний
с энергиями между
(с учётом возможного вырождения энергетич. состояний). Для колебат. степеней
свободы системы часто имеют в виду спектральную П. с.
определяемую по числу состояний на интервал частот
В этом случае
П. с. имеет смысл вводить, либо если система
обладает непрерывным энергетич. спектром, либо если спектр дискретен, когда
расстояние между соседними энергетич. уровнями мало по сравнению с
Если состояния системы определяются широко разнесёнными по
дискретными уровнями, каждый из к-рых расщепляется в области, узкие по
сравнению с расстоянием между уровнями, то вводят П. с. вблизи каждого
дискретного уровня. Это имеет место, напр., при движении электронов в сильном
квантующем магн. поле (см. квантовые уровни - Онсагера
квантование). Для свободных нерелятивистских частиц со спином s состояния характеризуются импульсом р и проекцией спина, а энергия
= р2/2т (т - масса) П. с. зависит только от р:где
множитель v = 2s + 1 учитывает вырождение по спину
s. Для квазичастиц твёрдого тела эта зависимость является более сложной,
напрю для электронов проводимости с энергетич. спектром
где интегрирование ведётся по изоэнергетич.
поверхности
= const в пространстве квазиимпульсов, ds - элемент площади на этой
поверхности;
- градиент в пространстве квазиимпульсов. Для спектральной П. с.
где k - волновой вектор, а интегрирование ведётся по поверхности
= const. Подынтегральные выражения для П. с. имеют особенности в точках,
в к-рых групповые скорости
обращаются в 0. Эти точки наз. критическими, а соответствующие особенности
в -
Ван
Хова особенностями.
Информация о П. с. существенна при определении
термодинамич. характеристик твёрдых тел (теплоёмкость, магн. восприимчивость
и др.), задаваемых интегралами по энергии от соответствующих микроскопич.
величин, умноженных на функцию распределения и П. с. На кинетич. характеристики
(электропроводность, теплопроводность и др.) также влияет П. с. При этом
для вырожденных систем, ферми-частиц, напр. электронов в
металлах, особенно
важна П. с. на поверхности Ферми
входящая непосредственно в виде множителя в большинство макроскопич. характеристик
системы. Для полупроводников наиб. важна П. с. вблизи дна зоны проводимости
и потолка валентной зоны.
Для систем, к-рые подчиняются случайному
распределению в пространстве, в частности для конденсиров. неупорядоченных
систем (жидкости, стёкла, аморфные вещества и пр.), П. с. является
осн. характеристикой энергетич. спектра. Т. к. П. с. является самоусредняющейся
величиной (см. Мезоскопика неупорядоченной системы), то можно оперировать
с П. с., усреднённой по пространств. распределениям частиц (в то время
как понятие усреднённого энергетич. спектра лишено смысла).
А. Э. Мейерович
Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.
Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.
Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.
Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.