к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Детекторы переходного излучения

Детекторы переходного излучения - детекторы быстрых заряж. частиц, регистрирующие переходное излучение, испускаемое при пересечении частицей границы раздела сред с разл. диэлектрич. проницаемостью. Интенсивность переходного излучения в широкой области энергий пропорц. квадрату заряда частицы (Ze2)и лоренц-фактору частицы15044-111.jpg где v - скорость частицы. Осн. часть излучения лежит в рентг. диапазоне частот и направлена вперёд в угле15044-112.jpg Эти свойства рентг. переходного излучения (РПИ) используют для идентификации (определения массы или заряда) частиц высоких энергий15044-113.jpg когда применение др. методов невозможно или затруднено (рис. 1).

15044-114.jpg

Рис. 1. Области энергии, где возможно разделение электронов и пионов при различных методах регистрации (длина детектора L15044-115.jpg2 м).

П. и. д. состоит из радиатора и собственно детектора (напр., дрейфовой камеры; рис. 2), регистрирующего рентг. фотоны, испускаемые частицей в радиаторе. Радиатор должен удовлетворять противоречивым требованиям: эффективно генерировать и слабо поглощать РПИ. Поскольку интенсивность РПИ мала (в ср. 1 квант на 137 границ раздела), то применяют слоистые или пористые радиаторы с большим числом границ раздела из материалов с низким ат. номером. Слоистый радиатор представляет собой регулярную стопку, содержащую неск. сотен тонких (5 - 100 мкм) фольг или плёнок из лёгкого вещества (Li, Be, полипропилен, лавсан) с зазором 0,1 - 2 мм между ними. В качестве пористых радиаторов применяют гранулированный LiH, лёгкий пенопласт, полипропиленовое или углеродное волокно. Толщина фольги (волокна) и ширина зазоров должны удовлетворять требованиям к длине формирования РПИ. Правильно подобранный нерегулярный радиатор генерирует всего на 10 - 15% меньше фотонов РПИ, чем регулярный слоистый из того же материала.

15044-116.jpg

Рис. 2. Секция детектора: МДК - многопроволочная дрейфовая камера; АП - анодные проволочки; ПП - проволочки, формирующие поле; Uдр - дрейфовый потенциал; U - высокое напряжение; е - электроны ионизации вдоль трека частицы;15044-117.jpg - дельта-электроны; К - кластер, образованный в результате фотоионизации газа фотоном рентгеновского переходного излучения.

Для уменьшения поглощения фотонов в радиаторе П. и. д. секционируют; каждая из секций содержит короткий радиатор вместе с устройством, регистрирующим рентг. фотоны. Материал радиатора, толщину фольги или волокна, ширину зазоров, число слоев в стопке, состав и толщину вещества регистрирующего устройства, число секций детектора при заданной его длине L предварительно оптимизируют на ЭВМ с целью обеспечить макс. число фотонов в наиб. удобном для регистрации энергетич. диапазоне (3 - 20 кэВ). Толщина радиатора в каждой секции, как правило, составляет 0,1 - 0,2 г/см2, число регистрируемых фотонов 10 - 20 (т. е. ок. 0,1 на 1 см длины радиатора), число секций ~ 10, L ~ 1 - 3 м.
Для регистрации фотонов РПИ пригоден любой газоразрядный детектор частиц с тонким входным окном, содержащий тяжёлый инертный газ (Хе, Кr, Аr), или твердотельный детектор. Чаще всего применяют пропорциональную камеру или дрейфовую камеру (изредка стримерную камеру), а также сцинтилляциопные детекторы и полупроводниковые детекторы. При этом возникает необходимость выделять сигнал РПИ на фоне ионизации, производимой быстрой заряж. частицей в том же детекторе. Из-за больших флуктуации, характерных для обоих процессов, прямое вычитание вклада ионизации из суммарного сигнала невозможно. Для решения этой задачи пользуются неск. методами. 1) Отклонение частицы в магн. поле позволяет пространственно разделить её трек от фотонов РПИ. Применение метода ограничено необходимостью увеличения длины установки и снижением её светосилы. 2) Измерение энерговыделения. Используя различие в амплитудном распределении сигналов от фотоэлектронов РПИ и сигналов, связанных с электронами ионизации, удаётся с большой достоверностью разделять частицы, т. е. более или менее точно оценивать их массу или заряд. 3) Счёт сгустков ионизации (кластеров) с большим энерговыделением (>3 - 5 кэВ). В П. п. д. такие кластеры, как правило, образуются фотонами РПИ, значительно реже - на треке ионизирующей частицы. Для их регистрации обычно используют проволочную дрейфовую камеру, подключённую к быстрому амплитудному дискриминатору с порогом в неск. кэВ. Фон создаётся15044-118.jpg-электронами, к-рые благодаря большому пробегу часто удаётся отделить по сигналу на ближайших к треку проволочках. Метод счёта кластеров обладает наиб. достоверностью (рис. 3), и его легче использовать для идентификации частиц и создания быстрого триггера.

15044-119.jpg

Рис. 3. Эффективность регистрации пионов15044-120.jpg и электронов15044-121.jpg с энергиями 10 ГэВ15044-122.jpg15044-123.jpg и 15 ГэВ15044-124.jpg в 12-секционном детекторе длиной 66 см с радиаторами из литиевой фольги толщиной 35 мкм: I - метод энерговыделения; II - то же с применением амплитудного анализа сигналов с 4 участков трека в каждой дрейфовой камере при пороге 4 кэВ; III - метод счёта кластеров при пороге 4 кэВ.

Осн. характеристика П. и. д. - зависимость между эффективностями регистрации частиц15044-125.jpg с разными лоренц-факторами15044-126.jpg напр. пионов и электронов одинаковой энергии (рис. 3). Эта зависимость определяет т. н. коэф. режекции15044-127.jpg (при15044-128.jpg = 90%), к-рый характеризует относит. кол-во частиц с меньшим15044-129.jpg среди зарегистрированных. Значение R зависит от параметров П. и. д., методов измерения и обработки данных, а также от порога электронных устройств, с помощью к-рых измеряют энерговыделение или число кластеров. В лучших компактных (L15044-130.jpg1 м) многосекционных П. и. д. R = 10-2 - 10-4 при15044-131.jpg = 103 - 105.
П. и. Д. входят в состав ряда комбинированных систем детекторов, используемых в экспериментах на больших ускорителях. В частности, они позволяют выделять электроны на фоне большого числа адронов в многочастичных взаимодействиях или разделять адроны с разл. массой во внеш. пучках ускорителей, а также при исследовании космич. лучей.

Литература по переходному излучению детекторов

  1. Оганесян А. Г., Рентгеновское переходное излучение и его применение в эксперименте, "ЭЧАЯ", 1985, т. 16, с. 137;
  2. Dolgoshein В., Transition radiation detectors and particle identification, "Nucl. Instr. and Metli. in Physics Research", 1986, v. A252, p. 137.

Г. И. Mерзон

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution