к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Объектив

Объектив (от лат. objectus - предмет) - оптич. система (или её часть), обращённая к объекту наблюдения или съёмки и создающая реальное, повёрнутое на 180° относительно объекта изображение. В зависимости от типа используемых оптич. деталей О. разделяют на линзовые, зеркальные, зеркально-линзовые и киноформные. Наиб. распространение получили линзовые О., обладающие широкими возможностями для получения разнообразных характеристик, что достигается увеличением кол-ва линз. Преимуществом зеркальных О. является принципиальное отсутствие хроматических аберраций и, как следствие, возможность использования для работы в области спектра, ограниченной лишь отражающей способностью зеркальных покрытий. Принципиальный недостаток зеркальных и зеркально-линзовых О. - экранирование (затенение) центр. части входного зрачка, за счёт чего ухудшается качество изображения и возникают дополнит. потери света. В киноформных О. наряду с линзами и зеркалами или без них используются киноформы - синтезиров. фазовые голограммы, аналогичные по своим аберрац. свойствам в монохроматич. свете линзам с асферич. поверхностями. Хроматич. аберрации киноформов не зависят от свойств материала, из к-рого они выполнены, а определяются (аналогично дифракционным решёткам)пространственной частотой структуры и спектральным диапазоном. Необычные дисперсионные свойства киноформов позволяют в сочетании с линзами, выполненными из обычных марок, оптических стёкол, получать О. апохроматы ,обладающие лучшим качеством изображения и более простой конструкцией, чем аналогичные О., содержащие кристаллич. среды и особые марки оптич. стекла. Применение киноформных О., не содержащих обычных линз и зеркал, возможно лишь в сочетании с лазерами, обладающими высокой монохроматичностью.
Фотографический О. или аналогичные О. киносъёмочных и телевизионных камер, приборов ночного видения, тепловизоров создают преим. уменьшенные изображения удалённых объектов на слое светочувствит. материала или на фотоэлектрич. приёмнике - телевизионной трубке, матрице или линейке фотоприёмников, фотокатоде электронно-оптич. прибора. Масштаб изображения пропорционален f' - фокусному расстоянию О., а освещённость обратно пропорц. квадрату диафрагменного числа К (К = f'/D, где D - диам. входного зрачка). Величину 1/К наз. относительным отверстием, а её квадрат - светосилой. Предельное значение диафрагменного числа, при к-ром возможно исправление аберраций, составляет K = 0,5, реально достигнутые значения K15009-90.jpg0,6, подавляющее большинство фотогр. О. имеют 3 > К15009-91.jpg1,2. Фотогр. разрешающая способность Nф фото- и кинообъективов зависит от коррекции аберраций, а также от разрешающей способности Ncсветочувствит. слоя и может быть вычислена по приближённой ф-ле 1/Nф15009-92.jpg1/N0 + 1/Nc, где N0 - визуальная разрешающая способность О. Для совр. фотообъективов Nф достигает 50 мм-1 в центре поля и 30 мм-1 для края при съёмке на фотоплёнке КН-1 (кинонегатив). Часть пространства или плоскости, точки к-рой изображаются О. с требуемым качеством, характеризуются угловым полем - плоским углом15009-93.jpg соответствующим телесному углу, соосному с оптич. осью и вершиной в центре входного зрачка. Угл. поле О. совр. фотоаппаратов составляет от 40° до 70°, аэрофотосъёмочных О. достигает 140°. На рис. 1 представлена оптич. схема совр. О. "Минитар" (f' = 32 мм, К = 2,8;15009-94.jpg= 68°) малогабаритного фотоаппарата с форматом кадра 24 мм X 36 мм. О. телевизионных камер и приборов ночного видения не отличаются принципиально от фотообъективов. В О. тепловизоров, работающих в дальней (8 - 14 мкм) ИК-области спектра, используются оптич. материалы, обладающие показателями преломления п > 2 (германий, селенид цинка, халькогенидные стёкла), что позволяет уменьшить кол-во линз по сравнению с аналогичными по характеристикам О. для видимой или ближней ИК-областей спектра. Малая дисперсия Ge позволяет создавать О., все линзы к-рых выполнены из этого материала, не принимая спец. мер для устранения хроматич. аберраций. Использование асферич. поверхностей германиевых линз позволяет сократить кол-во линз в О., имеющих К15009-95.jpg1,5, до двух.

15009-96.jpg

О. микроскопа - важнейшая часть его оптич. системы, создающая увелич. изображение объекта наблюдения в передней фокальной плоскости окуляра .Масштаб изображения обратно пропорционален фокусному расстоянию О. и составляет примерно от 1,5 до 100 крат. Предел разрешения микроскопа15009-97.jpg - мин. расстояние между центрами светящихся точек объекта, видимых раздельно, определяется дифракц. явлениями в О. и вычисляется по ф-ле15009-98.jpg где А - числовая апертура О., равная произведению показателя преломления среды, находящейся между объектом и О., на синус апертурного угла. Для О. микроскопов 0,0315009-99.jpgА15009-100.jpg1,4; диаметр поля изображения - от 18 мм до 32 мм. Простейшие О. микроскопов создают изображение, обладающее значит. кривизной, в результате чего при переходе от наблюдения центр. части поля к его краям необходима перефокусировка.
При фотографировании диаметр резкого изображения сокращается до 6 - 10 мм. Кривизну изображения в т. н. план-объективах устраняют существ. усложнением конструкции: на рис. 2 представлена схема высокоапертурного (А = 1,25) планахроматич. О. для металлографич. микроскопа.
15009-101.jpg

Особую группу образуют панкратические О. (иногда неточно наз. трансфокаторами), фокусное расстояние к-рых может плавно изменяться в широких пределах путём перемещения отдельных линз или групп их вдоль оптической оси. Такие О. применяются в цветных передающих камерах телевидения, в кино- и видеокамерах, а также и в фотоаппаратах. Соотношение между макс. и мин. значениями фокусного расстояния достигает 40 у О. телекамер, (6 - у О. кино- и видеокамер, 3 - у фотогр. О. Кол-во линз в панкратич. О. доходит до 30. Для уменьшения потерь света совр. О. просветляют (см. Просветление оптики).
О. зрительных труб, биноклей и телескопов создают промежуточное изображение удалённых объектов в передней фокальной плоскости окуляра. При диаметрах О., не превышающих 100 мм, наиб. распространённым является О., состоящий из двух склеенных линз. При больших диаметрах линзы не склеиваются. Начиная с диам. 500 - 800 мм используются зеркальные О., что обусловлено трудностями в получении однородных по показателю преломления крупных заготовок оптич. стекла. Макс. диаметр (6 м) имеет О. телескопа Специальной астр. обсерватории АН СССР на Северном Кавказе. Диафрагменные числа О. телескопов, как правило, К15009-102.jpg3; угл. поля15009-103.jpg предел разрешения - мин. угол15009-104.jpg(в секундах) между светящимися равнояркими точками (напр., звёздами), к-рые видны раздельно, определяется по ф-ле:15009-105.jpg= 140/D, где D измеряется в мм.
Проекционные О. создают увелич. изображения плоских объектов (кинокадров, слайдов, микрофильмов, кинескопов телевизоров) на отражающих и иросветных экранах. Оптич. системы этих О. аналогичны фотогр. О., но обычно обладают меньшими угл. полями и меньшими диафрагменными числами (К15009-106.jpg 1,8).
Репродукционные О., используемые в репрографии и для фотолитографии при произ-ве микроэлектронных схем, создают уменьш. изображения плоских оригиналов чертежей, текстов, рисунков, шаблонов; обладают повышенной разрешающей способностью, определяемой дифракцией и достигающей 1500 мм-1 для фотолитографич. О. и 150 мм-1 для репрографич. О.

15009-107.jpg

Столь высокие значения достигаются у первых за счёт существенного усложнения оптич. системы, у вторых за счёт сравнительно малых угл. полей и числовой апертуры. Оптическая схема О. для фотолитографии с разрешением ~ 1000 мм-1 на поле диам. 14 мм представлена на рис. 3.

Литература по объективам

  1. Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1 - 2, М. - Л., 1948 - 52;
  2. Слюсарев Г. Г., Методы расчета оптических систем, 2 изд., Л., 1969.

А. П. Грамматин

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution