к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Несохранение чётности в ядрах

Несохранение чётности в ядрах - отсутствие определённой чётности ядерных волновых функций по отношению к пространств, отражению (Р-инверсип), т. е. по отношению к одноврем. изменению направлений всех координатных осей на противоположные (см. Чётность ). Причиной несохранение чётности в ядрах является слабое взаимодействие между составляющими ядро нуклонами (нейтронами и протонами). Ядерные силы с учётом слабого взаимодействия представляются в виде суммы доминирующего Р-чётного вклада сильного взаимодействия и малой Р-нечётной добавки слабого взаимодействия. Относит, величина (F)слабых межнуклонных сил в ядре определяется константой слабого взаимодействия 3109-1.jpg (т - масса нуклона) и безразмерной массой пиона 3109-2.jpgхарактеризующей межнуклонные расстояния 3109-3.jpg в ядре:

3109-4.jpg

В результате модули волновой функции ядра до и после Р-инверсии отличаются друг от друга, вообще говоря, на относит, величину 3109-5.jpg Малость эффекта затрудняет его эксперим. исследование.

Несохранение чётности на уровне порядка3109-6.jpg было зарегистрировано непосредственно в нуклои-иуклонном взаимодействии (1980) при рассеянии поляризов. протонов на поляризов. протонной мишени [1]. Однако открытие несохранения чётности в ядрах было сделано раньше (1964). Оно стало возможным благодаря тому, что в ряде случаев есть усиление эффектов Н. ч. в я., предсказанное теоретически [2,3]. Известны три источника такого усиления - динамич., кинематич. и структурное.

Динамическое усиление. Если пренебречь слабым взаимодействием, то ядерному состоянию а с определённой чётностью отвечает волновая функция yа. При его учёте волновая функция имеет вид суперпозиции, содержащей помимо 3109-7.jpg небольшую примесь состояний с чётностью, противоположной чётности 3109-8.jpg причём наиб, вклад в примесь даёт волновая функция 3109-9.jpg ближайшего по энергии состояния b ядра:

3109-10.jpg

Здесь 3109-11.jpg - матричный элемент гамильтониана слабого взаимодействия между нуклонами, 3109-12.jpg - энергии состояний а и и. При отсутствии усиления 3109-13.jpg Если энергии 3109-14.jpg близки, то 3109-15.jpg мало, что может усиливать примесь состояний с противоположной чётностью в 3109-16.jpg т. е. до величины 3109-17.jpg Благоприятные условия для динамич. усиления возникают в тяжёлых ядрах, где плотность энергетич. уровней велика, а расстояния между уровнями малы.

Кинематическое усиление. Амплитуда М ядерной реакции (см. Амплитуда процесса)или g - перехода между ядерными состояниями с образованием или распадом состояния с неопределённой чётностью может быть представлена в виде суммы:

3109-18.jpg

здесь 3109-19.jpg - амплитуды процесса (в пренебрежении слабым взаимодействием), соответствующие образованию или распаду состояний а и b, обладающих противоположными чётностями. Относит, величина не сохраняющего чётность вклада 3109-20.jpg усилена, если "основная" амплитуда 3109-21.jpgподавлена по к-либо кинематич. причине. Пусть 3109-22.jpg и 3109-23.jpg - амплитуды поглощения ядром медленных продольно поляризованных нейтронов с орбитальными моментами 3109-24.jpg При поглощении могут образовываться резонансные состояния ядра (р- и s-резонансы) с одним и тем же моментом, но с противоположными чётностямп [чётность 3109-25.jpg = 3109-26.jpg Эти состояния смешиваются слабым взаимодействием, в результате амплитуда приобретает вид (2), т. е. возникает интерференция амплитуд противоположной чётности. Т. к. проекция спина нейтрона при Р-ин-версии не меняет знака, а импульс меняет, то проекция спина на импульс меняет знак при Р-инверсии. Поэтому при сохранении чётности сечение поглощения не может зависеть от знака продольной поляризации нейтрона и должно оставаться неизменным при изменении поляризации на противоположную. Несохрапение чётности проявляется в неодинаковости отвечающих амплитуде (2) сечений поглощения нейтронов, поляризованных по импульсу и против импульса. В р-резонансе отношение 3109-27.jpgпропорц. 3109-28.jpgгде3109-29.jpg- ширины р- и s-резонансов, k - импульс нейтрона, R - радиус ядра. Для нейтронов с энергией порядка 1эВ фактор кинематпч. усиления 1/kR достигает 103.

Если ядерные состояния не обладают определённой Р-чётностыо, то становится возможным испускание в одном и том же переходе магн. и электрич. g-квантов одинаковой мультипольности, т. е. с одинаковыми полными: моментами, но противоположными чётностями. При равной мультипольности маги, переходы происходят с меньшей вероятностью, чем электрические. Если "основной" переход (с сохранением Р-чётности) - магнитный, то "примесный" электрич. переход будет происходить с большей вероятностью (см. Гамма-излучение ).Пусть Ма и Mb - амплитуды испускания магн. и электрич. квантов, тогда Ма подавлена по сравнению с Мb в 3109-30.jpg раз (3109-31.jpg - ср. скорость нуклона в ядре), а эффект усилен в 3109-32.jpg раз.

Структурное усиление имеет место в случае, когда в ф-ле (2) "основная" амплитуда Ма подавлена по срав-неипю с Mb, вследствие структурных особенностей состояний ядра, участвующих в переходе. Напр., "основ-нон" Ml переход 3109-33.jpg с испусканием g-кванта с энергией 482 кэВ в ядре 131Та подавлен, т. к. сопряжён с изменением орбитального момента нуклона на 2, а примесный Ei переход3109-34.jpg не подавлен. Структурное усиление может достигать величины 3109-35.jpg-3109-36.jpg

Впервые несохранение чётности в ядрах наблюдалось в угл. распределении 3109-37.jpg -квантов, испускаемых при захвате поляризов. тепловых нейтронов ядром3109-38.jpg При сохранении чётности угл. распределение 3109-39.jpg-квантов3109-40.jpg (3109-41.jpg - угол между импульсом 3109-42.jpg-кванта и направлением поляризации нейтронов) не должно зависеть от знака проекции спина нейтрона на импульс3109-43.jpg-кванта и, следовательно, должно быть симметричным относительно направления поляризации нейтронов. На опыте была обнаружена асимметрия, описываемая ф-лой:

3109-44.jpg

причём 3109-45.jpg (в отсутствие усиления можно было бы ожидать значение 3109-46.jpg). Впоследствии аналогичная асимметрия была обнаружена в опытах с др. ядрами. При захвате неполяризованных нейтронов ядрами несохранение чётности приводит к появлению циркулярной поляризации у испускаемых g-квантов. Это явление также наблюдалось в реакции 113Cd(n, g)114Cd.

Зависимость от энергии нейтронов 3109-47.jpg отношения e прозрачности мишени из La для нейтронов с поляризациями, направленными по импульсу и против импульса, к сумме этих прозрачностей.

3109-48.jpg

Максимальное несохранение чётности в ядрах было обнаружено при исследовании поглощения ядрами 139La продольно поляризов. нейтронов с энергией 0,75 эВ, отвечающей р-резонансу [5, 6, 7, 8]. Наблюдалось изменение прозрачности ядерной мишени для нейтронов при изменении знака их продольной поляризации (рис.). Возникающая за счёт несохранения чётности в ядрах разность сечений поглощения в резонансе достигает 10%. Увеличение эффекта в 106 раз происходит за счёт его динамич. и кинематич. усилений. Несколько меньший эффект наблюдался и для др. ядер. Несохранение чётности в ядрах приводит также к появлению продольной поляризации у первоначально не-поляризов. пучка нейтронов после его прохождения через ядерную мишень.

При прохождении поперечно поляризов. нейтронов через вещество несохранение чётности приводит к вращению спина нейтрона вокруг направления его движения [8].

Несохранение чётности в ядрах обнаружено также при исследовании деления ядер U и Рu под действием поляризов. нейтронов [9].

Литература по несохранению чётности в ядрах

  1. Копелиович В. Б., Новые результаты по нарушению Р-четности в протон-протонном и нуклон-ядерном взаимодействии, "УФН", 1981, т. 134, с. 731;
  2. Шапиро И. С., Ядерные силы, не сохраняющие четность, "УФН", 1968, т. 95, с. 647;
  3. Блин-Стойл Р., Фундаментальные взаимодействия и атомное ядро, пер. с англ., М., 1976;
  4. Абов Ю. Г., Крупчицкий П. А., Нарушение пространственной четности в ядерных взаимодействиях, "УФН" 1976, т. 118, с. 141;
  5. Алфименков В. П., Нарушение пространственной четности в упругом канале взаимодействия нейтронов с ядрами, "УФН", 1984, т. 144, с. 361;
  6. Франк И. М., Модель составного ядра Н. Бора и нарушение четности, "УФН", 1986, т. 149, с. 689;
  7. Карманов В. А., Лобов Г. А., В зеркальном микромире, "Наука в СССР", 1988, № 6, с. 3;
  8. Сушков О. П., Фламбаум В. В., Нарушение пространственной четности при взаимодействии нейтронов с тяжелыми ядрами, "УФН", 1982, т. 136, с. 3;
  9. Данилян Г. В., Несохранение пространственной четности при делении ядер, "УФН", 1980, т. 131, с. 329.

В. А. Карманов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution