к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Многозарядные ионы (высокоионизованные атомы)

Многозарядные ионы (высокоионизованные атомы) - положительно заряженные ионы с большой кратностью ионизации. M. и. участвуют в процессах, протекающих в высокотемпературной лабораторной и астрофиз. плазме.

Специфич. особенности M. и., отличные от свойств нейтральных атомов с таким же числом электронов, объясняются их сильным кулоновским полем. К таким особенностям относятся конечная величина сечений возбуждения M. и. электронами при пороговых значениях энергии (ср. с возбуждением атома и молекулы), наличие резонансных пиков на кривой зависимости эфф. сечений от энергии, восстановление правильного порядка заполнения электронных оболочек (у нейтральных многоэлектронных атомов он нарушается; см. А том), наличие линий-сателлитов в спектрах испускания (см. ниже) и т. д.

Спектроскопич. символ иона

3031-101.jpgгде Z - заряд ядра иона, N - число электронов в нём) определяет масштаб величин его радиац. и столк-новит. характеристик. Так, расстояние между уровнями энергии и ионизационный потенциал3031-102.jpg, длины волн спектральных линий3031-103.jpg потенциал электростатич. взаимодействия электронов с ядром 3031-104.jpg потенциал спин-орбитального взаимодействия 3031-105.jpg, радиус иона 3031-106.jpg , лэмбовский сдвиг 3031-107.jpgвероятность электрич. дипольного перехода3031-108.jpg

Эфф. сечения столкновит. процессов также зависят от z. Эти процессы можно характеризовать масштабным фактором za, причём для процессов возбуждения и ионизации электронами3031-109.jpgдля фотоионизации3031-110.jpg перезарядки при столкновениях с нейтральными атомами a = 1, ионизации нейтральных атомов3031-111.jpg и т. д. T. о., эфф. сечения элементарных процессов с участием M. и. сильно зависят от партнёра по столкновениям и параметра r.

С ростом z существенно возрастает влияние релятивистских и радиац. эффектов на характеристики M. и., а тип связи угловых и спиновых моментов электронов отличается от LS-связи (см. Связь векторная): происходит непрерывный переход от LS-связи к jj-связи. Если спин-орбитальное и эл--статич. взаимодействия одного порядка величины, то имеет место промежуточный тип связи.

В результате появления релятивистских эффектов меняются отбора правила ,разрешаются переходы, запрещённые для нейтральных атомов, и при определ. условиях интенсивность запрещённых линий в спектрах M. и. становится значительной. Так, в плотной плазме интеркомбинац. линия 3031-112.jpg (см. Интеркомбинационные квантовые переходы)в спектрах гелиеподобных ионов с3031-113.jpgимеет сравнимую с резонансной линией 3031-114.jpgинтенсивность. В нейтральных атомах HeI магн. дипольный переход 23S1 - 11S0 запрещён правилами отбора, в то же время в спектрах испускания плазмы низкой плотности соответствующая линия, принадлежащая гелиеподобным M. и., отчётливо регистрируется и используется для диагностики плазмы. Спектры M. и. изоэлектронного ряда сходны со спектрами нейтральных атомов, имеющих то же число электронов, они лишь смещаются в КВ-об-ласть (длина волны3031-115.jpg. Так, длины волн резонансных линий атомов H и Не составляют 1216 и3031-116.jpg а соответствующие линии в спектрах водородоподобных ((Hl) и гелиеподобных ([He]) ионов железа - 1,78 и 3031-117.jpg . В спектрах M. и. появляются, кроме того, дополнит, линии, отсутствующие в спектрах нейтральных атомов; их наз. сателлитами. Одна из причин их появления - влияние процесса диэлектронной рекомбинации M. и. при их взаимодействии с электронами плазмы. Такой процесс происходит в два этапа: сначала M. и. захватывают электрон, образуя автоионизац. состояние, энергия к-рого лежит выше границы ионизации образующегося иона; при этом в ионе одноврем. возбуждается ещё один или более электронов. Автоионизац. состояние затем может распадаться по двум каналам: автоионизационному-с испусканием электрона или радиационному - с испусканием кванта и переходом в "стабильное" (лежащее ниже границы ионизации) состояние. Для M. и. характерен радиац. канал распада с испусканием фотона3031-118.jpgВ результате таких переходов в спектре M. и. появляется линия-сателлит на частоте 3031-119.jpg , соответствующей переходу в ионе, кратность к-рого на единицу меньше. Так, сателлитами резонансной линии3031-120.jpgгелиеподобных ионов являются линии, соответствующие переходам между конфигурациями3031-121.jpgв [Li] ионах. Ионы в дважды (или многократно) возбуждённых состояниях могут образоваться также при др. элементарных процессах.

Наиб, полно исследованы спектры [Не] ионов и их сателлиты, т. е. спектры [Li] ионов. Эти ионы достаточно просты для исчерпывающего теоретич. анализа и информативны для определения параметров лаб. и астро-физ. плазм. Обозначения, принятые для спектральных линий [Не] и [Li] ионов, приведены в табл. 1. Присутствие одного или неск. дополнит, электронов незначительно изменяет длины волн сателлитов по сравнению с осн. линией. Напр., для резонансной линии3031-122.jpgгели-енодобного иона 3031-123.jpg а для её d и q-сателлитов, т. е. ионов 3031-124.jpg 3031-125.jpg и 3031-126.jpg соответственно.

С ростом z возрастает интенсивность сателлитов, она пропорциональна коэф. ветвления 3031-127.jpg где A и W - вероятности радиац. и автоионизац. распадов автоионизац. состояний. Вероятность W слабо зависит от 2, в то время как А резко возрастает с ростом z (для электрич. дипольных переходов 3031-128.jpg, поэтому при больших z распад автоионизац. состояний происходит гл. обр. по радиац. каналу, т. е. с образованием линий-сателлитов. Сателлиты, как правило, имеют малую ширину (по отношению к расстоянию между ними) и при достаточном спектральном разрешении хорошо регистрируются. T. о., в спектрах излучения M. и. сосредоточено большое число спектральных линий сравнимой интенсивности: линий, принадлежащих иону данной кратности (в т. ч. запрещённых, компонент тонкой структуры), а также сателлитов, испускаемых ионами меньших кратностей. Каждый ограниченный спектральный интервал содержит богатую информацию о строении иона, а также о параметрах плазмы, в к-рой он существует.

Табл. 1.

3031-129.jpg

* J и J'- квантовые числа полного момента начального и конечного состояний.


3031-130.jpg


Рис. 1. Спектр вакуумной искры (7) и солнечной вспышки (г) (линии ионов Fe XXIV-XXV).

3031-131.jpg

Рис. 2. Спектр лазерной плазмы (линии Ca XVIII-XIX).

Спектры M. и. наблюдаются в спектрах короны Солнца и звёзд; к лаб. источникам M. и. относятся: лазерная плазма, вакуумная искра, плазменный фокус ,плазма токамака, стелларатора, пинч-источники, магн. ловушки, ускорители и т. д. Широкое распространение получили компактные ECR-источники M. и., основанные на эффекте электронно-циклотронного резонанса. Ионами с макс, кратностью ионизации является [H] и [Не] ионы урана3032-1.jpgполученные на ускорителе ионов в Радиационной лаборатории им. Э. Лоуренса (1985, Беркли, США); для ионов3032-3.jpgизмепеп лэмбовский сдвиг уровня3032-4.jpgк-рый равен что3032-5.jpg хорошо согласуется с расчётными данными (75 эВ).



3032-2.jpg


Рис. 3. Спектр плазмы токамака (линии Fe XXIV-XXV).

Первые эксперим. исследования спектров M. и. и их сателлитов были выполнены в 1920-40-х гг., интенсивные исследования начаты в 60-70-х гг. внеатмосферным изучением короны Солнца методами рентгеновской спектроскопии. Точность измерения3032-6.jpgв спектрах лаб. и астрофиз. источников сравнима с точностью теоретич. пасчётов. .3032-7.jpg составляет 10-4-10-5 для диапазона3032-8.jpg На рис. 1-3 приведены рентг.

спектры для разл. источников M. и. Экспериментально, как правило, измеряются разности между длинами волн линий данной и резонансной, к-рая обычно согласуется с расчётной. Появились первые эксперим. измерения (1986) абс. длин волны переходов в [H] и [Не] ионах. Эти результаты являются наиб, точными и подтверждают надёжность теоретич. расчётов. В табл. 2 приведены значения длин волн l для резонансных переходов 21P1 - 11S0 в [Не] ионах, полученные в вакуумной искре и теоретически рассчитанные.

табл. 2.

3032-9.jpg

Спектральные характеристики M. и. рассчитываются методом самосогласов. ноля (Хартри - Фока метод)с учётом корреляц. и релятивистских эффектов и методом теории возмущений по параметру 1/z на базисе водородоподобных радиальных волновых функций. На основе этих методов созданы комплексы универсальных автоматизиров. программ для ЭВМ, к-рые позволяют производить расчёт спектров M. и., проводить диагностику высокотемпературной плазмы, изучать происходящие в ней элементарные процессы.

MH. элементарные процессы с участием M. и. (возбуждение, ионизация, перезарядка, диэлектронная рекомбинация и т. д.) представляют интерес для лазерной физики, физики плазмы, пучково-плёночной спектроскопии, физики атомных столкновений, рентг. астрономии и астрофизики и т. д.

Литература по многозарядным ионам (высокоионизованным атомам)

  1. Мандельштам С. Л., Коротковолновое излучение Солнца, в сб.: Успехи Советского Союза в исследовании космического пространства, M., 1978;
  2. Novel sources oi higly stripped ions, "Proc. of Int. Conf. Phys. of Highly Ionised Atoms", Oxf., 2-5 July 1984 (North-Holland), Amst., 1985, p. 516;
  3. Пресняков Л. П., Шевелько В. П., Янев P, К., Элементарные процессы с участием многозарядных ионов, M., 1986;
  4. Вайнштейн Л. А., Шевелько В. П., Структура и характеристики ионов в горячей плазме, M., 1986;
  5. Рентгеновская спектроскопия многозарядных ионов, M., 1988.

В. П. Шевелько>

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что релятивистское объяснение феномену CMB (космическому микроволновому излучению) придумал человек выдающейся фантазии Иосиф Шкловский (помните книжку миллионного тиража "Вселенная, жизнь, разум"?). Он выдвинул совершенно абсурдную идею, заключавшуюся в том, что это есть "реликтовое" излучение, оставшееся после "Большого Взрыва", то есть от момента "рождения" Вселенной. Хотя из простой логики следует, что Вселенная есть всё, а значит, у нее нет ни начала, ни конца... Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 18.11.2019 - 19:10: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
16.11.2019 - 16:57: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
16.11.2019 - 16:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Марины Мелиховой - Карим_Хайдаров.
16.11.2019 - 12:16: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Игоря Кулькова - Карим_Хайдаров.
16.11.2019 - 07:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
15.11.2019 - 06:45: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
14.11.2019 - 12:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
13.11.2019 - 19:20: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
12.11.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Бориса Сергеевича Миронова - Карим_Хайдаров.
12.11.2019 - 11:49: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Веры Лесиной - Карим_Хайдаров.
10.11.2019 - 23:14: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Кирилла Мямлина - Карим_Хайдаров.
05.11.2019 - 21:56: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Декларация Академической Свободы - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution