Импульсный разряд - электрич. разряд в днэлектрич. среде (газе, вакууме, жидкостях и в твёрдых диэлектриках) при воздействии импульса напряжения, длительность к-рого сравнима или меньше длительности установления стационарной формы горения
разряда. Время протекания И. р. условно принято делить на предпробойную стадию (время запаздывания t3)
и стадию пробоя. Время запаздывания пробоя - это интервал от момента
приложения к межэлектродному промежутку напряжения статич. пробоя Uст
до начала спада напряжения на электродах, т. е. момента, когда
сопротивление ионизованной среды становится сравнимым с сопротивлением
внеш. электрич. цепи.
Для газового И. р. интервал t3 условно разбивают на статистич. время запаздывания tст,
в течение к-рого в межэлектродном промежутке (чаще всего на катоде)
появляется хотя бы один электрон, вызывающий развитие электронной
лавины, и время формирования пробоя tф(t3=tст+tф).
В случае принудительного инициирования электронов, напр, при облучении
межэлектродного зазора, можно добиться выполнения условия tстЪtф. Тогда длительность предпробойной стадии t3
определяется интенсивностью ионизационных процессов, т. е.
прикладываемым к промежутку напряжением или, точнее, превышением
амплитудного значения импульса напряжения U0 над пробивным, к-рое характеризуется т. н. коэфф. импульса b=(U0-Uст)/Uст. Характерные времена формирования И. р. в разл. средах при пробое межэлектродного промежутка длиной d под действием прямоугольных импульсов напряжения разл. амплитуды показаны на рис.
При b/1 и отсутствии принудительного инициирования электронов в ряде случаев для И. р. в газе t3~tст. Измерения t3
в таких условиях позволяют судить о статистике возникновения
инициирующих электронов в промежутке. Распределение времён запаздывания
пробоя в этом случае обычно подчиняется экспоненциальному закону n(t)=n0exp(-t/tст), где n0 - общее число пробоев, п(t) - число пробоев, в к-рых реализовано
время запаздывания от t и более.
Механизм формирования И. р. в газе и особенности его горения в стадии
пробоя в значит. степени определяются условиями развития первичных
электронных лавин (см. Лавина электронная ).
Зависимость времени формирования импульсного разряда от напряжённости электрического поля для разных сред: 1 - воздух, р=10 атм, d=5 мм; 2 - диэлектрик - вода, d=3 см; 3 - вакуум, d=0,5 мм; 4 - трансформаторное масло, d = 1,2 мм.
При инициировании разряда одиночными электронами, возникающими на поверхности катода [под действием случайных фотонов или ионов (космич. частиц)], число электронов в лавине описывается законом N=ехр(ax), где х - длина пути, пройденная электронами в направлении дрейфа, a - ионизационный коэф. Таунсенда, определяющий закон размножения электронов в лавине. В условиях U~Сст (b=0) внеш. электрич. поле обычно не искажается пространственными зарядами одиночной первичной электронной лавины. Разряд развивается за счёт вторичных и последующих лавин, к-рые инициируются электронами, выбитыми с поверхности катода при её бомбардировке ионами и фотонами. Такой механизм развития пробоя наз. таунсендовским. В результате пробоя формируется стационарный тлеющий разряд при низких давлениях, а при повыш. давлениях вначале наблюдается кратковрем. фаза тлеющего разряда, к-рый затем переходит в искровой. Для повышенных напряжений U0 (b/0,2) характерен однолавинный (стримерный) механизм пробоя. В этом случае электронная лавина на длине xк[d набирает критич. число электронов Nк, при к-ром электрич. поле вблизи головки и в хвосте лавины существенно усиливается. Это способствует быстрому распространению в направлении анода и катода слабопроводящих плазменных образований (стримеров). На стадии пробоя такие образования преобразуются в высокопроводящий искровой канал. В случае, если разряд инициируется большим числом электронов, равномерно распределённых в объёме промежутка, возможно взаимное пространственное перекрытие электронных лавин ещё до того, как N достигает Nк. При этом в нач. стадии пробоя в широком диапазоне изменений Р реализуется объёмная форма протекания тока. Через характерные времена (10-7-10-6 с) объёмный (тлеющий) разряд переходит в искровой. И. р. широко применяется для создания спец. источников света (лампы для оптич. накачки лазеров, эталонные источники света и т. д.), в газоразрядной электронике, электротехнике.
Г. А. Месяц
Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
- Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.
В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.
Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.