к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Зеркало оптическое

Зеркало оптическое - оптич. деталь (выполненная из стекла, металла, ситалла или пластмассы), одна из поверхностей к-рой обладает правильной формой, покрыта отражающим слоем и имеет шероховатость, не большую сотых долей длины волны света. В зависимости от типа покрытия различают 3. металлизированные, в к-рых отражающее покрытие выполнено из алюминия, серебра, золота и др. металлов, и 3. диэлектрические с отражающим покрытием, образованным чередованием тонких слоев диэлектриков, напр., сернистого цинка, трёхсернистого цинка и т. п. Действие последних основано на явлении интерференции света, возникающей в тонких слоях (см. Оптика тонких слоев ).Вследствие этого диэлектрич. 3. обладают ярко выраженной селективностью - способностью отражать свет узкого спектрального диапазона, а также поляризацией. Качество 3. тем выше, чем ближе форма его поверхности к математически правильной (сферич., цилиндрич., параболоидальной и т. д.). Широко применяют также плоские 3,, к-рые служат для изменения направления световых лучей в соответствии с законом отражения от плоской поверхности. Положение изображения, даваемого 3., может быть получено из общих законов геометрической оптики. Если отражающая поверхность обладает осью симметрии, то положение предмета и его изображения связаны с радиусом кривизны r у вершины О (рис. 1) соотношением: 1/s'+1/s= 2/r, где s - расстояние от вершины О 3. до предмета A, s' - расстояние до изображения А'. Эта ф-ла строго выполняется в параксиальной области, т. е. при бесконечно малых углах лучей, образуемых с осью 3. Бесконечно малый отрезок прямой длиной l, перпендикулярной оси, изображается отрезком прямой l', также перпендикулярным оси, причём l' = ls'/s. Если предмет находится на бесконечности, то s' равно фокусному расстоянию 3.: s'=f' = r/2. Фокальная плоскость находится на расстоянии r/2 от вершины 3. Зеркала обладают всеми аберрациями, свойственными обычным оптич. системам (см. Аберрации оптических систем ),за исключением хроматических. Последнее обстоятельство делает особенно ценным применение 3. в астр. телескопах, в монохроматорах (особенно ИК) и др. приборах. Приведём выражение для аберрации в изображении бесконечно удалённого точечного источника, полученного с помощью одиночного 3. Если меридиональный луч образует с осью 3. угол w (рис. 2), то расстояние FA' между осью и точкой А' пересечения лучом
065_084-60.jpg
фокальной плоскости FA'=f' tg w+z, где z - поперечная аберрация, определяемая ур-нием:
065_084-61.jpg
где х - расстояние от вершины 3. до входного зрачка, w'=h/f', е - эксцентриситет меридионального сечения поверхности 3. Все величины на рис. 2 положительны. Первый член в ур-нии (*), пропорциональный w'3, описывает сферическую аберрацию, второй - кому, третий определяет астигматизм и кривизну поля изображений, четвёртый - дисторсию. Для 3., применяемых в телескопах, центр входного зрачка совпадает с вершиной О 3. (х=0), тогда ф-ла (*) принимает вид
8(z/f' )= -w'3(1-е2)+6w' w - 8w'w2.
Для сферич. 3. (е=0)
z/f' = - 1/8 w'3 +3/4w'2w-w'w2
Для параболич. 3. (е=1)
z/f' = 3/4w'2w-w'w2,
т. е. сферич. аберрация отсутствует. Из ф-лы (*) также вытекает известное свойство сферич. 3., центр входного зрачка к-рого совпадает с центром кривизны 3., а именно, у него отсутствуют все аберрации, кроме сферической и кривизны поля изображения. Действительно, при х=r и е=0 ф-ла (*) принимает вид
8z/f' = - w'3 +4w'w2.
Этим свойством пользуются в зеркально-линзовом телескопе, состоящем из сферич. 3. и коррекционной пластинки, помещённой во входном зрачке для исправления сферич. аберрации 3. Эллипсоидальные 3. применяются в тех случаях, когда следует безаберрационно изобразить точку оси, находящуюся на конечном расстоянии от 3., в др. точку оси. Обе точки являются фокусами эллипсоидальной поверхности. Тем же свойством обладают гиперболоидальные поверхности для случая, когда одна из точек мнимая, как это происходит, напр., в системе телескопа Кассегрена. В прожекторах и зеркально-линзовых оптич. системах применяют также 3., представляющие собой линзы, задняя сторона к-рых является отражающей. 3. широко используют в оптич. интерферометрах ,а также в оптических резонаторах лазеров. 3. должно иметь высокий коэффициент отражения. Большими коэф. отражения обладают металлич. поверхности: алюминиевые в диапазонах УФ, видимом и ИК, серебряные - в видимом и ИК, золотые - в ИК. Отражение от любого металла сильно зависит от длины волны света l: с её увеличением коэф. отражения возрастает для нек-рых металлов до 99% и более. Коэф. отражения у диэлектриков значительно меньше, чем у металлов, напр., стекло с показателем преломления n=1,5 отражает всего 4% (подробнее см. в ст. Отражение света ).Однако, используя интерференцию света в многослойных комбинациях прозрачных диэлектриков, можно получить отражающие поверхности (в относительно узкой области спектра) с коэф. отражения более 99% не только в видимом диапазоне, но и в УФ, что невозможно с металлич. поверхностями. Наиб. распространённый способ изготовления 3.- нанесение отражающих металлич. или диэлектрич. покрытий на полированную стеклянную поверхность катодным распылением или испарением в вакууме. В последнее десятилетие разрабатываются способы изготовления больших параболоидальных зеркал (для телескопов) из отд. малых зеркал, положение к-рых автоматически регулируется т. о., чтобы отражённый ими свет звезды собирался в одну точку (см. Адаптивная оптика ).Это позволяет в значит. степени компенсировать искажения, производимые турбуленцией в атмосфере.

Литература по оптическим зеркалам

  1. Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 2, М.- Л., 1952;
  2. Максутов Д. Д., Астрономическая оптика, 2 изд.. Л., 1979;
  3. Современный телескоп, М., 1968; Пейсахсон И. В., Оптика спектральных приборов, Л., 1970.

Г. Г. Слюсарев

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что в 1974 - 1980 годах профессор Стефан Маринов из г. Грац, Австрия, проделал серию экспериментов, в которых показал, что Земля движется по отношению к некоторой космической системе отсчета со скоростью 360±30 км/с, которая явно имеет какой-то абсолютный статус. Естественно, ему не давали нигде выступать и он вынужден был начать выпуск своего научного журнала "Deutsche Physik", где объяснял открытое им явление. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution