Гамильтона уравнения (канонические уравнения механики) - дифференциальные ур-ния движения голономной
механич. системы в канонич. переменных, к-рыми являются s обобщённых
координат qi и s обобщённых импульсов pi, где s - число степеней свободы системы. Выведены У. P. Гамильтоном (W. R.
Hamilton) в 1834. Для составления Г. у. надо в качестве характеристич. функции
системы знать Гамильтона функцию Н(gi, рi, t), где
t - время. Тогда, если все действующие на систему силы потенциальны,
Г. у. имеют вид
Если наряду с потенциальными
на систему действуют непотенциальные силы F, то к правым частям 2-й группы
ур-ний (*) надо прибавить соответствующие обобщённые силы Qi. Ур-ния (*) представляют собой систему 2s обыкновенных дифференц.
ур-ний 1-го порядка, интегрируя к-рые можно найти все qi и
pi как функции времени t и 2s постоянных интегрирования,
определяемых по нач. данным. Решение системы ур-ний (*) можно также свести к
отысканию полного интеграла соответствующего ей ур-ния в частных производных
(см. Гамильтона - Якоби уравнение).
Если одна из координат
qi, напр. q1, является циклич. координатой,
т. е. явно не входит в выражение функции Н, то =0
и одно из ур-ний (*) даёт сразу интеграл ,
где - постоянная.
Особый интерес представляет случай, когда все координаты циклические, а функция
явно не зависит
от времени (силовое поле и наложенные связи стационарны). Тогда все ,
т. е. постоянны; следовательно, функции
и тоже постоянны,
и 1-я группа ур-ний (*) даёт ,
откуда , где ,
Ci - новые постоянные. Ур-ния в этом случае интегрируются
элементарно и все координаты являются линейными функциями времени. Отсюда следует,
что задачу интегрирования Г. у. можно свести к задаче отыскания для системы
циклич. координат. Это, в принципе, возможно, т. к. Г. у. обладают тем важным
свойством, что они допускают переход с помощью т. н. канонических преобразований
от переменных qi, рi к новым переменным Qi(qi,
рi, t), Pi(qi, рi, t), которые
также являются каноническими и удовлетворяют уравнениям (*) с соответствующей
функцией H(Qi,
Pi, t).
Равноправность в Г. у.
координат и импульсов как независимых переменных, а также инвариантность этих
ур-ний по отношению к канонич. преобразованиям открывают большие возможности
для обобщений. Поэтому Г. у. имеют важные приложения не только в механике, но
и во многих др. областях физики, напр. в статистич. физике, квантовой механике,
электродинамике и др.
Знаете ли Вы, как разрешается парадокс Ольберса? (Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды. Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.