к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Атомная физика

Атомная физика - раздел физики, посвящённый изучению строения и свойств атомов и элементарным процессам, в к-рых участвуют атомы. Наиб. характерные для А. ф. длины (линейные размеры атомов) ~10-8 см, а энергии (энергии связи внеш. электронов в атоме, элементарных хим. процессов с участием атомов) порядка эВ (тогда как для ядерной физики наиб. характерны длины ~10-13 см и энергии порядка МэВ; см. Атом, Атомные спектры, Рентгеновские спектры. Поляризуемость атомов, ионов и молекул, Спонтанное испускание, Вынужденное испускание, Эйнштейна коэффициенты, Фотоэффект, Столкновения атомные. Низкотемпературная плазма).

Теоретич. основа А. ф.- квантовая теория (см. Квантовая механика, Квантовая алектродинамика), позволяющая объяснить огромную совокупность микроскопич. явлений на атомно-молекулярном уровне. Существенно, что строение и свойства атома как системы, состоящей из ядра и электронов, и характеристики излучательных и безызлучательных элементарных процессов, протекающих на этом уровне, определяются эл--магн. взаимодействием (в отличие от ядерной физики и физики элементарных частиц, в к-рых фундам. роль играют сильное взаимодействие и слабое взаимодействием; причём сильное взаимодействие не проявляется на характерных для А. ф. расстояниях, превышающих 10-12 см, а слабое взаимодействие должно приводить в А. ф. к весьма интересным, но очень малым по величине эффектам).

Предыстория и основные этапы развития атомной физики. Возникновению А. ф. предшествовало развитие атомистич. представлений о строении материи. Первонач. идеи о существовании атомов как мельчайших неделимых и неизменных частиц материи были высказаны в Древней Греции в 5-3 вв. до н. э. (Демокрит, Эпикур). В период становления точного естествознания в 17-18 вв. атомистич. представления в разл. формах развивали И. Кеплер (J. Kepler), П. Гассенди (P. Gassendi), P. Декарт (R. Descartes), P. Бойль (R. Boyle), И. Ньютон (I. Newton), M. В. Ломоносов, P. Бошкович (R. Boskovic) и др. Однако эти представления носили гипотетич. характер и лишь с кон. 18 - нач. 19 вв. эксперим. исследования свойств вещества привели к созданию атомистич. теорий.

На основе установленных количественных хим. законов и законов идеальных газов с начала 19 в. стала развиваться химическая атомистика [Дж. Дальтон (J. Dalton), А. Авогадро (A. Avogadro di Quaregna), Я. Берцелиус (J. Berzelius)], в сер. 19 в. чётко разграничены и определены понятия атома и молекулы [С. Канниццаро (S. Cannizzaro)], в 1869 Д. И. Менделеев открыл периодич. закон хим. элементов (см. Периодическая система элементов). Представления физической атомистики легли в основу развития молекулярной физики, в т. ч. кинетич. теории газов (сер. 19 в.), и классич. статистической физики [2-я пол. 19 в., P. Клаузиус (R. Clausius), Дж. Максвелл (J. С. Maxwell), Л. Больцман (L. Boltzmann), Дж. У. Гиббс (J. W. Gibbs)]. B кон. 18-19 вв. начало развиваться учение о внутр. строении кристаллов и их симметрии [P. Гаюи (R. J. Hauy), O. Браве (A. Bravais), E. С. Фёдоров, А. Шёнфлис (A. M. Schoenflies)] на основе атомистич. представлений (см. Симметрия кристаллов, Враве решетки). Однако в 19 в. хим и физ. атомистика и атомистика в кристаллографии не имели общей теоретич. основы, ею стала в 20 в. квантовая теория строения атомов, молекул и кристаллов, созданная в результате развития А. ф.

Возникновение современной атомной физики связано с открытиями электрона (1897) и радиоактивности (1896). Они создали основу для построения моделей атома как системы взаимодействующих электрически заряженных частиц. Важнейшим этапом развития атомной физики стало открытие Э. Резерфордом (E. Rutherford) в 1911 атомного ядра и рассмотрение атома на основе квантовых представлений H. Бором (N.H.D. Bohr) в 1913. Резерфорд предложил модель атома, состоящего из центрального положительно заряж. ядра большой массы и размеров, малых по сравнению с размерами атома в целом, и из отрицательно заряженных электронов, имеющих по сравнению с ядром малую массу. Он экспериментально обосновал эту модель опытами по рассеянию a-частиц атомами. Все свойства атома оказались связанными либо со свойствами ядра (их изучает ядерная физика), либо со свойствами электронных оболочек атома.

Строение последних определяет химические и большинство физ. свойств атома и периодичность этих свойств в зависимости от осн. характеристики атома в целом - величины положит. заряда его ядра. Однако на основе законов классич. физики не могли быть объяснены устойчивость атома (ускоренно движущиеся вокруг ядра электроны должны непрерывно излучать и очень быстро упасть на ядро) и линейчатые атомные спектры, закономерности в к-рых подчиняются комбинац. принципу Ритца. Выход из этих трудностей нашёл Бор, применив к атому квантовые представления, впервые введённые M. Планком в 1900 и развивавшиеся с 1905 А. Эйнштейном и др. учёными. Основу квантовой теории атома Бора составляют два постулата: 1-й постулат Бора о существовании стационарных состояний атома, находясь в к-рых он не излучает (стационарные состояния обладают опре-дел. значениями энергии, в общем случае дискретными, из одного состояния в другое атом может переходить путём квантового, скачкообразного, перехода), 2-й постулат Бора о квантовых переходах с излучением, определяемых условием частот: 111998-240.jpg , где 111998-241.jpg- частота поглощаемого или испускаемого монохрома-тич. эл--магн. излучения, 111998-242.jpg - энергии стационарных состояний, между к-рыми происходит переход.

Постулаты Бора были всесторонне подтверждены экспериментально, оказались применимыми для др. микросистем (молекул, атомных ядер) и получили тео-ретич. обоснование в квантовой механике и квантовой электродинамике. Для определения возможных дискретных значений энергии простейшего атома - атома водорода - в стационарных состояниях Бор применил классич. механику и предположение о совпадении результатов квантовой и классич. теорий при малых частотах излучения, что представляло первонач. форму соответствия принципа ,к-рый Бор развивал в дальнейшем, придавая ему большое значение; принцип соответствия сыграл большую роль в становлении квантовой механики.

Рассмотрение, согласно модельной теории атома Бора, движения электронов в стационарных состояниях по законам классической механики при дополнительных условиях квантования (в частности, при условии равенства момента импульса электрона на круговой орбите целому кратному постоянной 111998-243.jpg; это условие часто неправильно включают в число постулатов Бора) позволило самому Бору, А. Зоммерфельду (A. Sommerfeld) и др. учёным объяснить закономерности в оптич. и рентгеновских спектрах и дать физ. истолкование периодич. закона элементов. Однако модельная теория Бора встретилась с рядом трудностей при объяснении свойств сложных атомов и простейших молекул (уже для атома гелия и молекулы водорода), что было связано с использованием классич. механики и имело принципиальный характер. Эти трудности были разрешены на следующем этапе развития А. ф. созданием начиная с 1925 последоват. квантовой теории.

Литература по атомной физике

  1. Зубов В. П., Развитие атомистических представлений до нач. XIX в., M., 1965;
  2. Кедров Б. M., Три аспекта атомистики, ч. 2 - Учение Дальтона. Историч. аспект, M., 1969;
  3. Xунд Ф., История квантовой теории, пер. с нем., К., 1980;
  4. Джеммер M., Эволюция понятий квантовой механики, пер. с англ., M., 1985;
  5. Eльяшевич M. А., Развитие Нильсом Бором квантовой теории атома и принципа соответствия, "УФН", 1985, т. 147, с. 253.

M. А. Елъяшевич

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что любой разумный человек скажет, что не может быть улыбки без кота и дыма без огня, что-то там, в космосе, должно быть, теплое, излучающее ЭМ-волны, соответствующее температуре 2.7ºК. Действительно, наблюдаемое космическое микроволновое излучение (CMB) есть тепловое излучение частиц эфира, имеющих температуру 2.7ºK. Еще в начале ХХ века великие химики и физики Д. И. Менделеев и Вальтер Нернст предсказали, что такое излучение (температура) должно обнаруживаться в космосе. В 1933 году проф. Эрих Регенер из Штуттгарта с помощью стратосферных зондов измерил эту температуру. Его измерения дали 2.8ºK - практически точное современное значение. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution