Имитационную модель, в которой продвижение модельного времени реализовано с фиксированным шагом, рассмотрим на примере огневого противоборства группировок A и В. Аналитическое моделирование такой операции мы рассмотрели в предыдущей теме. Однако мы снимаем условие многочисленности группировок, так как оно теперь несущественно.
Для начала, чтобы не загромождать алгоритм модели, введем два ограничения:
Впоследствии мы убедимся, что в имитационной модели рассматриваемого боя эти ограничения могут быть сняты.
Моделирование проводится с целью определения средних численностей группировок на любой момент боя, в частности, на фиксированный момент времени .
Учебная задача состоит в том, чтобы изучить структуру конкретного алгоритма, в котором продвижение модельного времени реализовано с фиксированным шагом .
Введем обозначения:
- первоначальные численности группировок;
- текущие значения численностей группировок и соответственно;
- число оставшихся средств каждой из сторон в конце -го интервала моделирования (после -ой реализации модели);
- текущее число реализаций модели;
- заданное число реализаций модели случайного процесса;
- текущее время;
- длительность интервала моделирования;
- средние за реализаций модели численности оставшихся средств сторон в конце каждого интервала моделирования:
- переменные счета средств сторон и соответственно .
Идея построения имитационной модели состоит в реализации модели противоборства раз и фиксации остатков сторон после каждой реализации. По выполнении реализаций будут определены оценки численностей сторон .
Определим величину . На выбор величины влияют два противоречивых требования:
С учетом приведенных выше требований разобьем интервал моделирования на равные отрезки такие, чтобы каждое огневое средство любой из сторон могло выстрелить не более одного раза.
Например, скорострельность средств поражения стороны
, а средств стороны . Так как , то следует выбрать исходя из условия .
Алгоритм имитации противоборства сторон состоит из четырех модулей:
Блок-схема алгоритма имитации противоборства двух сторон показана на рис. 3.23.
Модуль установки начальных условий ( ). Он состоит из трех блоков 1… 3.
Блок 1 - установка начальных условий на весь процесс моделирования: число реализаций модели, интервал исследования , величина временного шага , установка в нуль ячеек
Блок 2 - установка начальных условий на очередную реализацию процесса: восстановление численностей сторон и исходного времени .
Блок 3 - установка начальных условий на очередной отрезок модельного времени: подготовка перебора средств
поражения каждой стороны.
Модуль продвижения модельного времени ( ). Состоит из двух блоков 4..5.
Блок 4 - продвижение модельного времени на очередной временной отрезок .
Блок 5 - проверка условия окончания очередной реализации модели .
Модуль формирования результата и обеспечения заданной точности ( ). Состоит из блоков 6…9.
Блок 6 - накопление суммы остатков средств каждой стороны за текущее количество интервалов моделирования (реализаций модели).
Блок 7 - счетчик числа реализаций модели ( ) .
Блок 8 - осуществляет контроль над выполнением заданного числа реализаций модели. Число реализаций модели определяется, исходя из заданных точности и достоверности результатов моделирования.
Блок 9 - формирование конечного результата моделирования.
В данном случае - и .
При необходимости определяются и другие статистические характеристики.
Модуль имитации противоборства сторон ( ). Этот модуль - основной. Если структура предыдущих модулей, в общем-то, стандартна, то реализация данного модуля носит функционально-индивидуальный характер. Модуль включает блоки 10…25. Блок-схема алгоритма модуля представлена на рис. 3.24.
Каждое средство противоборствующих сторон идентифицируется его номером. Номера средств стороны - , средств стороны - .
Блок 10 - выбор очередного средства стороны : .
Блок 11 - проверка: все ли средства стороны получили право на выстрел? Если , то управление передается блоку 18 для имитации выстрелов средствами стороны . В противном случае управление передается блоку 12.
Блок 12 - проверка: боеспособно ли выбранное средство? Состояние средств сторон и определяют переменные и :
Если окажется , то управление передается блоку 10 для
выбора очередного средства стороны . Иначе - переход к блоку 13.
Блок 13 - выбор цели из средств стороны . Выбор цели может быть организован либо случайной, либо детерминированной процедурами. Самый простой способ: последовательная проверка средств стороны с выбором первого непораженного средства.
Блок 14 - проверка выбранной цели: не уничтожена ли она была на предыдущих этапах данной реализации модели? Если , то переход к блоку 13 для выбора непораженной цели.
Иначе - переход к блоку 15 для имитации выстрела.
Выстрел - одиночное событие со случайным исходом. Моделью такого события является известная нам конструкция из двух блоков 15 и 15.1.
Блок 15 - обращение к ДСЧ за равномерно распределенным случайным числом .
Блок 15.1 - проверка результата выстрела. Если , цель поражена и управление передается блоку 16 для фиксации этого факта. Если , то промах и управление передается блоку 10 для выбора очередного стреляющего средства стороны .
Блок 16 - уменьшение числа средств стороны : и установка признака состояния пораженного средства: .
Блок 17 - не уничтожена ли вся группировка ? Если да, то данная реализация модели заканчивается и управление передается блоку 6 для фиксации оставшихся боеспособных средств стороны . Если нет, то управление передается блоку 10 для выбора очередного средства стороны и т. д.
После предоставления права на выстрел всем средствам стороны соответствующее право дается средствам стороны - переход из блока 11 в блок 18.
Функции блоков 18… 25 попарно одинаковы с функциями блоков 10…17, изменены только обозначения - вместо указано , вместо , вместо и т. д.
По окончании перебора всех средств стороны и, если не зафиксировано полное уничтожение средств стороны , управление передается блоку 3 для моделирования очередного скачка времени на величину .
Примерная диаграмма изменения численностей сторон и в -й реализации на интервале показана на рис. 3.25.
Боев В.Д., Сыпченко Р.П. Компьютерное моделирование