оглавление   ДМ   экономическая информатика   визуальные среды - 4GL   Теория и практика обработки информации

Этапы и цели компьютерного моделирования

К основным этапам компьютерного моделирования относятся:

Различают аналитическое и имитационное моделирование.

Аналитическое моделирование - это такое моделирование, при котором изучаются численно-математические (количественные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению.
Иитационное моделирование - такое моделирование, при котором исследуются математические модели в виде алгоритмов, воспроизводящих функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций логического типа.

Рассмотрим процесс компьютерного математического моделирования, включающий численный эксперимент с моделью (рис. 1).

 

Рис.1. Общая схема процесса компьютерного математического моделирования

Первый этап – определение целей моделирования. Основные из них таковы:

1) Понимание

Модель в этой ситуации нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром. Примеры: модель движения планет Солнечной системы, модель кристаллизации вещества, модели волновых движений в различных средах, модели деформации твердых тел.

2) Управление

Модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях. Примеры: модель системы автоматического управления, модель механизма, модель поведения масс людей.

З) Прогнозирование

Модель используется для того, чтобы прогнозировать прямые и косвенные последствия воздействия на объект заданными способами. Примеры: модель атмосферы для прогноза погоды, модель рынка, модель сложной сети или другой технической системы.

Поясним это на конкретных примерах.

Пусть объект исследования – взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же произошло, обусловив уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, «вдруг» начинают резко менять численность – и здесь математическое моделирование позволяет (с известной долей достоверности) установить причину явления, или, по крайней мере, опровергнуть определенную гипотезу о его причинах.

Выработка концепции управления объектом – другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был вполне безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом (в несложных физических системах), так и чрезвычайно сложным – на грани выполнимости – в системах биологических, экономических, социальных. Если относительно легко ответить на вопрос об изменении режима распространения тепла в тонком стержне в зависимости от изменений в составляющем его сплаве, то несравненно труднее проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Составим список величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Обозначим первые из них (входные) через x1, x2,..., хn,,; вторые (выходные) через y1, y2,…,yn. Символически поведение объекта или процесса можно представить в виде

где Fj — те действия, которые следует произвести над входными параметрами, чтобы получить результаты. Хотя запись  напоминает обозначение функции, мы здесь используем ее в более широком смысле. Лишь в простейших ситуациях здесь F есть функция в обычном смысле; чаще всего она выражает лишь наличие некоторой связи между входными и выходными параметрами модели.

Входные параметры хi могут быть известны «точно», т.е. поддаваться (по крайней мере, в принципе) измерению однозначно и с любой степенью точности — тогда они являются детерминированными величинами. Так, в классической механике, сколь сложной ни была бы моделируемая система, входные параметры детерминированы и, соответственно, детерминирован процесс эволюции такой системы. Однако в природе и обществе гораздо чаще встречаются процессы иного рода, когда значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются вероятностными (стохастическими), и, соответственно, случайным является процесс эволюции системы.

Случайный – не значит непредсказуемый. Просто в этой ситуации характер исследования и задаваемых вопросов резко меняется – они приобретают вид «С какой вероятностью...?», «С каким математическим ожиданием...?» и т.п. Примеров случайных процессов не счесть как в науке, так и в обыденной жизни (силы, действующие на летящий самолет в ветренную погоду; переход улицы при большом потоке транспорта и т.д.).

Для стохастической модели выходные параметры могут быть как величинами вероятностными, так и однозначно определяемыми. Например, на перекрестке улиц можно ожидать зеленого сигнала светофора и полминуты, и две минуты (с разной вероятностью), но среднее время ожидания есть величина вполне определенная, и именно она может быть объектом моделирования.

Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием (разделением по рангам). Чаще всего невозможно, да и не нужно учитывать все факторы, которые могут повлиять на значения интересующих нас величин уj. От того, насколько умело выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективность достижения цели. Выделить наиболее значимые факторы и отсеять менее важные может лишь специалист в той предметной области, к которой относится модель. Так, опытный учитель знает, что на успех контрольной работы влияет степень знания предмета и психологический настрой класса; однако, влияют и другие факторы — например, каким уроком по счету идет контрольная, какова в этот момент погода и т.д. — фактически проведено ранжирование.

Отбрасывание менее значимых факторов огрубляет объект моделирования и способствует пониманию его главных свойств и закономерностей. Умело ранжированная модель должна быть адекватна исходному объекту или процессу в отношении целей моделирования. Обычно определить, адекватна ли модель можно только в процессе экспериментов с ней, анализа результатов первоначального моделирования.

На рис. 2 проиллюстрированы две крайние ситуации: а) некоторый параметр хi, очень сильно влияет на результирующую величину уi; б) почти не влияет на нее. Ясно, что если все представляющие интерес величины уi реагируют на хi, так, как изображено на рис. 2б, то хi, является параметром, который при первом подходе может быть из модели исключен. Если же хотя бы одна из величин уi реагирует на изменение хi, так, как изображено на рис. 2а, то хi нельзя исключать из числа значимых параметров.

 

Рис. 2. Варианты степени влияния величины хi на результирующую величину уj

Следующий этап — поиск математического описания. На этом этапе необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстает перед нами в виде уравнения, системы уравнений, системы неравенств, дифференциального уравнения или системы таких уравнений и т.д.

Когда математическая модель сформулирована, нужно выбрать метод ее исследования. Как правило, для решения одной и той же задачи есть несколько конкретных методов, различающихся эффективностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса.

После разработки алгоритма и составления программы для ЭВМ необходимо решить с ее помощью простейшую тестовую задачу (желательно, с заранее известным ответом) с целью устранения грубых ошибок. Это лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. По существу, тестирование может продолжаться долго и закончиться тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Затем следует собственно численный эксперимент, и выясняется, соответствует ли модель реальному объекту (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментальными с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаются к одному из предыдущих этапов.

оглавление   ДМ   экономическая информатика   визуальные среды - 4GL   Теория и практика обработки информации
Знаете ли Вы, что эконометрические модели - это экономико-математические модели, целью которых является установление значений параметров исследуемой экономической системы, не поддающихся непосредственному наблюдению. Как правило, представляют собой эмпирическую спецификацию теоретической модели исследуемой системы, содержащей требуемый параметр, которую оценивают на основе имеющихся эмпирических данных с помощью того или иного статистического метода (например, метода наименьших квадратов, метода оболочки данных, метода максимальной энтропии и т.п.).

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 23.07.2017 - 14:00: ЦИТАТЫ ЧУЖИХ ФОРУМОВ - Outside Quotings -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
22.07.2017 - 11:01: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
22.07.2017 - 05:52: ЭКОЛОГИЯ - Ecology -> Глобальное потепление - миф или... миф? - Карим_Хайдаров.
21.07.2017 - 20:18: СОВЕСТЬ - Conscience -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
21.07.2017 - 16:28: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
20.07.2017 - 20:30: СОВЕСТЬ - Conscience -> Проблема государственного терроризма - Карим_Хайдаров.
18.07.2017 - 21:10: СОВЕСТЬ - Conscience -> Просвещение от Сергея Салля - Карим_Хайдаров.
16.07.2017 - 09:22: СОВЕСТЬ - Conscience -> Просвещение от Константина Сёмина - Карим_Хайдаров.
16.07.2017 - 04:36: СОВЕСТЬ - Conscience -> Просвещение от Михаила Делягина - Карим_Хайдаров.
15.07.2017 - 09:13: СОВЕСТЬ - Conscience -> Проблема народного образования - Карим_Хайдаров.
15.07.2017 - 03:37: СОВЕСТЬ - Conscience -> Просвещение от академика С.Ю. Глазьева - Карим_Хайдаров.
14.07.2017 - 17:12: СОВЕСТЬ - Conscience -> Просвещение от Галины Царёвой - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution