к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Туннельный диод (Эсаки диод)

Туннельный диод (Эсаки диод) - полупроводниковый диод, содержащий p-n-переход с очень малой толщиной запирающего слоя. Действие туннельного диода основано на прохождении свободных носителей заряда (электронов) сквозь узкий потенц. барьер благодаря квантовомеханич. процессу туннелирования (см. Туннельный эффект ).Поскольку вероятность туннельного просачивания электронов через барьер в значит. мере определяется шириной области пространств. заряда в p-n-переходе, туннельные диоды изготовляют на основе вырожденных полупроводников (с концентрацией примесей до 1025- 1027 м-3). При этом получается резкий p-n-переход с толщиной запирающего слоя 5-15 нм. При изготовлении туннельных диодов обычно применяют Ge и GaAs; реже используют Si, InSb, In As, PbTe, GaSb, SiC и др. полупроводниковые материалы. Для германиевых диодов в качестве донорных примесей, как правило, используют P или As, в качестве акцепторных - Ga и Аl; для арсенид-галлиевых - Sn, Pb, S, Se, Те (доноры), Zn, Cd (акцепторы). Узкий р - n-переход получают чаще всего методом вплавления.

Первый туннельный диод создан на основе Ge Л. Эсаки (L. Ezaki) в -1957. Изобретение Т.д. экспериментально подтвердило существование процессов туннелирования в твёрдых телах. Туннельный механизм переноса заряда обусловливает N-образный вид вольт-амперной характеристики Т. д. (рис. 1). На рис. 2 приведены упрощённые энергетич. диаграммы p-n-перехода Т. д. при разл. напряжениях смещения U. В отсутствие внеш. смещения (рис. 2, а)ферми-уровни 5033-7.jpg в вырожденном (по обе стороны от перехода) полупроводнике находятся на одной высоте соответственно в валентной зоне и зоне проводимости (т. е. уровень Ферми постоянен по всему полупроводнику). Примем, что все разрешённые энергетич. уровни, расположенные ниже уровня Ферми, заняты, а расположенные выше него - свободны. Тогда при U=0 туннельный переход невозможен и ток I равен нулю (точка А на рис. 1). Если на Т. д. подать небольшое прямое напряжение, то происходит уменьшение высоты потенц. барьера или смещение энергетич. уровней p-области относительно энергетич. уровней n-области (рис. 2, б). В этом случае электроны проводимости из n-области туннелируют сквозь потенц. барьер (не меняя своей энергии) на разрешённые свободные энергетич. уровни валентной зоны p-области - в Т. д. появляется туннельный ток Iт, направление к-рого противоположно направлению движения электронов (точка Б на кривой 2, рис. 1). С увеличением U ток I сначала растёт до значения Iмакс (точка В на кривой 2, рис. 1), а затем (по мере того как уменьшается степень перекрытия зоны проводимости и-области и валентной зоны p-области) убывает. Начиная с нек-рого значения Uмин, эти зоны не перекрываются (рис. 2, в)и туннельный ток прекращается (точка Г на кривой 2, рис. 1); через р - n-переход течёт только диффуз. ток Iд. При U>Uмин Т. д. подобен обычному полупроводниковому диоду, включённому в прямом направлении. При подаче напряжений обратного направления (рис. 2, г) в Т. д. существует ток за счёт электронов, туннелирующих из валентной зоны p-области на свободные разрешённые энергетич. уровни зоны проводимости и-области; этот ток быстро возрастает с увеличением обратного напряжения.

5033-8.jpg

Рис. 1. ВАX туннельных диодов на основе Ge (1 GaAs (2): U-напряжение смещения на туннельном диоде; I/Iмакс -отношение тока через диод к току в максиме ВАX; Iмин-ток в минимуме ВАX (отнесённый к Iмакс); Uмакс и Uмин-напряжения смещения, соответствующие токам Iмакс и Iмин; Iт-туннельный ток; Iд -диффузионный (тепловой) ток.


5033-9.jpg

Рис. 2. Энергетические диаграммы p-n-перехода туннельного диода при различных напряжениях смещения (U1 и U2 - прямые смещения, U3 - обратное смещение);5033-10.jpg-верхняя граница валентной зоны; 5033-11.jpg -нижняя граница зоны проводимости; 5033-12.jpg - уровни Ферми дырок и электронов; 5033-13.jpg-ширина запрещённой зоны; W-ширина p- n-перехода; I, и Iд - туннельный и диффузионный токи; е - заряд электрона.

Основные параметры Т. д.: макс. прямой ток Iмакс и мин. прямой ток Iмин, соответствующие им напряжения Uмакс и Uмин (значения этих параметров для Т. д. на GaAs и Ge приведены на рис. Г); отрицат. дифференц. сопротивление, определяемое наклоном падающего участка ВАХ (ВГ на кривой 2, рис. 1), имеет значения (по абс. величине) для разл. типов Т. д. от единиц до десятков Ом туннельные диоды могут работать в более широком интервале температур, чем обычные диоды, изготовленные на основе того же материала (до 200 °С германиевые; до 600 °С арсенидгаллиевые). Поскольку рабочий диапазон смещений Т. д. расположен в области значительно более низких напряжений по сравнению с др. полупроводниковыми приборами, то они относительно маломощны (выходная мощность порядка мВт). Малая инерционность процесса туннелирования электронов позволяет применять Т. д. на частотах СВЧ-диапазона вплоть до десятков ГГц. Предельная рабочая частота Т. д. (при использовании его в качестве прибора с отрицат. сопротивлением) выражается через параметры эквивалентной схемы (рис. 3) в виде 5033-15.jpg а резонансная частота паразитных колебаний определяется ф-лой5033-16.jpg5033-17.jpg Для усилит. Т. д. необходимо, чтобы выполнялись условия 5033-18.jpg , где fо - рабочая частота. Величинами Rп Сп, rs, а соответственно и частотными характеристиками диода можно управлять, если изменять степень легирования областей полупроводника по обе стороны от р-n-перехода (сувеличением степени легирования частотный предел Т. д. возрастает). Частотные соотношения Т. д. накладывают также ограничения на технологию изготовления и конструктивное оформление диодов: в Т. д., чтобы достичь малых Lк, электрич. контакт к вплавленной металлич. капле на кристалле полупроводника выполняют с помощью металлич. мембраны, ленточного лепестка или пластины; при этом Lк составляет 10-10 Гн. Обычно Т. д. оформляются в металлокерамич. корпусе.

5033-14.jpg

Рис. 3. Эквивалентная схема туннельного диода: Rп и Сп-дифференциальное сопротивление и ёмкость р -n-перехода; rs-омическое сопротивление потерь; Lk и Ск - индуктивность и ёмкость корпуса.

Туннельные диоды находят применение в схемах усилителей и генераторов СВЧ-диапазона, в быстродейств. переключающих устройствах, устройствах памяти с двоичным кодом и т. д.

Литература по туннельным диодам

  1. Esaki L. , Phenomen in narrow germanium paranormal-junctions letter, "Phys. Rev.", 1958, v. 109, № 2, p. 603; Зи С. М., Физика полупроводниковых приборов, пер. с англ., кн. 1-2, М., 1984. П. Б. Константинов.

    к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

    Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
    Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
    Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

    Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

    Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

    Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

    Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

    Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

    НОВОСТИ ФОРУМАФорум Рыцари теории эфира
    Рыцари теории эфира
     03.12.2019 - 22:04: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Марины Мелиховой - Карим_Хайдаров.
    03.12.2019 - 11:12: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
    30.11.2019 - 19:55: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
    30.11.2019 - 18:13: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
    29.11.2019 - 08:14: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Декларация Академической Свободы - Карим_Хайдаров.
    27.11.2019 - 08:31: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> КОМПЬЮТЕРНО-СЕТЕВАЯ БЕЗОПАСНОСТЬ ДЛЯ ВСЕХ - Карим_Хайдаров.
    27.11.2019 - 08:30: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
    27.11.2019 - 08:27: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА - Карим_Хайдаров.
    23.11.2019 - 12:17: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
    19.11.2019 - 09:07: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Маклакова - Карим_Хайдаров.
    18.11.2019 - 19:10: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
    Bourabai Research Institution home page

    Bourabai Research - Технологии XXI века Bourabai Research Institution