к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Пространственная когерентность волнового поля

Пространственная когерентность волнового поля - одна из его характеристик, определяющая статистич. связь, корреляцию между параметрами поля в разных точках пространства.

Пространственная когерентность волнового поля лазерного пучка определяет статистич. связь между значениями поля не в произвольных точках пространства, а в разных точках поперечного сечения пучка. Вдоль направления распространения лазерного пучка статистич. связь определяется временной когерентностью излучения. Спонтанные шумы, возбуждение многих поперечных мод приводят к тому, что поперечная пространственная структура лазерных пучков становится случайной, а их поле излучения оказывается не полностью когерентным в пространстве. Вместе с тем масштаб поперечных корреляций лазерного излучения (поперечный радиус когерентности, радиус корреляции) значительно превосходит соответствующий масштаб нелазерных источников излучения. По величине отношения значений радиуса корреляции к радиусу пучка лазерного излучения различают два предельных случая излучения: многомодового по поперечным индексам и одномодо-вого.

Многомодовые лазерные пучки. В случае возбуждения большого числа N поперечных мод со статистически независимыми фазами пространственная статистика лазерных пучков близка к гауссовой. При этом поперечная пространственная корреляц. функция, функция взаимной когерентности, определяемая выражением

4016-12.jpg

похожа на корреляц. функцию4016-13.jpg-коррелированного излучения, дифрагированного на круглом отверстии. В выражении (1) E(r,z,t)- комплексная напряжённость элек-трич. поля, действительная часть - ReE(r,z,t), Amn - амплитуда моды с поперечными индексами т и п, 4016-14.jpg - модовая функция, 4016-15.jpg описывает распределение интенсивности моды в поперечном сечении. Направление оси z совпадает с направлением распространения лазерного пучка, двумерный вектор4016-16.jpg лежит в плоскости, перпендикулярной оси z. На рис. 1

Рис. 1. Модуль степени пространственной когерентности излучения твердотельного лазера для N поперечных мод: 1 - для N= 830; 2 - для N = 104.


4016-17.jpg

изображена нормированная корреляц. функция (1), т. е. степень П. к.

4016-18.jpg

для случая4016-19.jpg= 0 и разл. числа поперечных мод. Значение радиуса корреляции, определённого, напр., по уровню 0,5 от макс. значения |g(s,0)|, равного единице, существенно зависит от геометрии резонатора и числа поперечных мод N. Так, для многомодовых лазерных пучков, возбуждаемых в резонаторе с плоскими прямоугольными зеркалами, радиус корреляции4016-20.jpgd/N, где 2d - размер зеркала вдоль измеряемого направления. В случае сферич. резонатора с круглыми зеркалами4016-21.jpgгде а(z) - радиус низшей моды на расстоянии z от перетяжки пучка. Последняя зависимость радиуса корреляции получила эксперим. подтверждение. Кроме того, значение радиуса корреляции rкс увеличивается к краю лазерного пучка, т. е. много-модовые лазерные пучки, возбуждаемые в сферич. резонаторах, являются статистически неоднородными. Для числа мод N = 104 отношение4016-22.jpgпоэтому, если радиус пучка составляет 1-10 мм, радиус корреляции оказывается равным 10-100 мкм. При наличии неоднородностей в активной лазерной среде даже для плоского резонатора более адекватной оказывается модель сферич. резонатора.

Одномодовые лазерные пучки; предельная П. к. и стохастическое блуждание пучка. При генерации лишь осн. поперечной моды ТЕМ00 (индексы m=n=0) усиление в лазере достаточно для компенсации потерь, состоящих из потерь в среде, на излучение и дифракционных. Однако этого усиления недостаточно для компенсации потерь на высших модах, поскольку с увеличением номера поперечного индекса m и (или) n дифракц. потери растут. Спонтанное излучение усиливающей среды не только является затравкой для возбуждения осн. моды, но и поддерживает на определённом уровне интенсивность подпороговых высших мод. Вследствие излучения последних П. к. одномодовых лазерных пучков не является полной. Но в пределах ширины пучка степень П. к., напр. для излучения гелиево-неоновых лазеров, отличается от 1 не более чем на 10-4 - 10-6 (рис. 2).


Рис. 2. Зависимость 1 - |g(s,0)| в одночастотном режиме генерации лазера ЛГ-159 (l = 633 нм): точки - экспериментальные данные, кривая - теоретическая.


4016-23.jpg

Осн. влияние на предельную степень П. к. моды ТЕМ00 оказывают ближайшие подпороговые высшие моды, т. е. моды с поперечными индексами m = 0, n=1 и m = 1, n = 0. Для мод сферич. резонатора

4016-24.jpg

и значений r{0,0}, s{s,0} степень П. к.

4016-25.jpg

где

4016-26.jpg

Величина 4016-27.jpg представляет собой отношение макс. интенсивностей подпороговой моды и осн. моды:

4016-28.jpg

Здесь4016-29.jpgи u - коэф. усиления и групповая скорость на частоте 4016-30.jpg осн. моды, 4016-31.jpg- Планка постоянная, qтп - дифракц. потери на соответствующей моде, R - коэф. отражения по амплитуде выходного зеркала; N1> N2 - населённости нижнего и верхнего уровней усиливающей среды,4016-32.jpg- параметр вырождения уровня, P - мощность излучения через выходное зеркало. Из (3) видно, что значение 4016-33.jpg обратно пропорц. разности дифракц. потерь 4016-34.jpg излучаемой мощности Р, разности населённостей рабочих уровней.

Др. интерпретация следствия подпорогового возбуждения высших мод (т. е. не полной П. к.) - стохастич. блуждание центра осн. моды. Дисперсия этого блуждания

4016-35.jpg

При радиусе пучка а0= 0,3 мм значение4016-36.jpg= 0,5 мкм (рис. 2). С ростом мощности излучения величина s уменьшается как 4016-37.jpg и может быть4016-38.jpg10 нм.

С неполной П. к. можно также связать естеств. угл. расходимость 4016-39.jpg, обусловленную спонтанным излучением лазера:

4016-40.jpg

При этом дисперсия случайного блуждания

4016-41.jpg

Соотношения (5), (6) дают общую связь между неполной П. к., стохастич. блужданием и естеств. угл. расходимостью лазерного пучка. Выражения (4), (6) в совокупности с (3) можно рассматривать как некий пространственный аналог ф-лы Шавлова - Таунса для естеств. ширины линии одночастотного лазерного излучения.

Неполная П. к. одномодового лазерного пучка (или естеств. угл. расходимость, или стохастич. блуждание), обусловленная принципиально не устранимыми флук-туациями - спонтанным излучением лазера, влияет, очевидно, на разрешающую способность и информативность систем оптич. записи и считывания информации.

Литература по пространственной когерентности волнового поля

  1. Ахманов С. А., Дьяков Ю., Е., Чиркин А. С., Введение в статистическую радиофизику и оптику, М., 1981;
  2. Ахманов С. А., Чиркин А, С., Белин-ский А. В., Предельная пространственная когерентность лазерного излучения, "УФН", 1993, т, 163, № 3.

А. С. Чиркин

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution