к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Плазмохимия

Плазмохимия - наука, изучающая закономерности физ--хим. процессов и реакций в низкотемпературной плазме. Низкотемпературная плазма представляет собой совокупность заряж. частиц (электронов, ионов), возбуждённых по внутр. степеням свободы (электронным, колебательным, вращательным), тяжёлых частиц, свободных радикалов; обычно она также содержит высокотемпературные и высокоэнтальпийные газовые потоки (струи) большого динамич. напора и является источником мощного эл--магн. излучения. В такой плазме распределение реагирующих частиц по скоростям и внутр. степеням свободы отличается от распределения Максвелла - Больцмана, т. е. система является неравновесной и плазмохим. процессы и реакции существенно отличаются от реакций традиц. химии. В реагирующей плазмохим. системе ср. энергия молекул реагентов и их продуктов составляет от 0,1 до 50 эВ; при этом роль неупругих соударений (и в частности, реактивных) резко возрастает. Характерные времена физ., хим. и физ--хим. процессов сближаются, так что эти процессы уже нельзя считать независимыми; поэтому необходимо рассматривать многоканальные процессы, учитывая взаимодействие каналов между собой и влияние внеш. среды на реагирующую подсистему. Кроме обычных для газов столкновений молекул (атомов и т. п.), в плазме имеют место взаимодействия на больших расстояниях, вызванные эл--магн. полями и взаимодействием заряж. частиц между собой и с нейтральными частицами. Энергия внутр. степеней свободы частиц плазмы и поступат. энергия, как правило, сильно отличаются друг от друга по величине: разл. компоненты плазмохпм. системы могут иметь разл. энергию (или температуру при наличии почти максвелловского распределения). Так, в тлеющем разряде, ВЧ- и СВЧ-разрядах при низких давлениях ср. энергия электронов ~315052-15.jpg10 эВ, ср. колебат. энергия молекул и радикалов15052-16.jpg 1 эВ, а ср. энергия поступат. и вращат. степеней свободы молекул ~0,1 эВ.
Неравновесность плазмохим. процессов может быть обусловлена не только разл. физ. воздействиями (потоками частиц или излучений), но и самой хим. реакцией (особенно быстрой), к-рая, будучи пороговым процессом, уменьшает кол-во молекул, обладающих энергией, превышающей пороговую, изменяя тем самым вид функции распределения молекул по энергиям.

Кинетика плазмохимических реакций. Для её описания применяется неравновесная хим. кинетика, к-рая учитывает квантовую энергетич. структуру молекул и атомов, т. е. концентрацию каждого компонента в каждом энергетич. состоянии и их функции распределения, а также переходы между энергетич. состояниями и каналы хим. реакций. Система ур-ний традиционной хим. кинетики при этом заменяется на систему Паули уравнений, описывающих многоканальные процессы, причём каждое отдельное ур-ние этой системы связывает скорость изменения концентрации реагирующих молекул (атомов, ионов, радикалов) данного вида в нек-ром i-м энергетич. состоянии с концентрациями этих молекул во всех возможных энергетич. состояниях, с вероятностями перехода между состояниями, с частотой столкновения частиц и со скоростью возбуждения данного уровня ("накачкой" уровня).
Ур-ние Паули может быть получено или на основе общих положений теории вероятности и теории случайных процессов, или на основе Лиувилля уравнения. В простейшем случае для мономолекулярной реакции в термостате инертного газа он имеет вид

15052-17.jpg

где Ni - концентрация реагирующих молекул в i-м энергетич. состоянии в момент времени t; pij - вероятность (на одно столкновение) перехода при столкновении реагирующей частицы с молекулой термостата из состояния j в состояние i; рji - то же для перехода из состояния i в состояние j; ki - коэф. скорости хим. реакции для молекул, находящихся в i-м состоянии; Ri - скорость возбуждения i-ro уровня ("накачка"); v - частота столкновений. Интегрирование на ЭВМ системы ур-ний Паули позволяет в ряде случаев получить полное описание плазмохим. реакций в конкретной реагирующей системе. В общем случае надо решать сложную систему, состоящую из Навъе - Стокса уравнений (или их аналогов), ур-ний Паули и ур-ний электродинамики. Кроме ур-ний Паули для концентраций отд. типов частиц в неравновесной кинетике используются также ур-ния Больцмана для функций распределения и ур-ние Ланжевена, включающее стохастич. силу. Коэф. скорости плазмохим. реакции ki является ср. скоростью (на единицу концентрации реагирующих компонент) по всем динамически и энергетически доступным каналам столкновений. Усреднение производится по скоростям и квантовым состояниям реагирующих молекул, т. е. в выражение ki должны входить в явном виде функции распределения fi (r, r , t)реагентов и продуктов реакций. В простейшем случае диссоциации двухатомной молекулы, являющейся малой добавкой в инертном газовом термостате, при учёте только колебат. степеней свободы имеем для i-гo колебат. уровня:

15052-18.jpg

где15052-19.jpg - сечение реакции,15052-20.jpg - энергия,15052-21.jpg - функция распределения. Это выражение для ki наз. уровневым коэф. скорости хим. реакции. Существ. роль в плазмохим. реакциях играет процесс смешения реагентов разл. энергий и реакций в турбулентных потоках. Скорости плазмохим. реакций очень велики (длительность контакта реагентов порядка 10-3 - 10-5 с).
Механизмы плазмохимических реакций зависят от состава плазмы, длины свободного пробега реагирующих частиц, давления плазмы, распределения молекул по электронным, колебат. и вращат. уровням энергии. Наиб. важные и часто встречающиеся плазмохим. процессы, при к-рых идёт хим. реакция, следующие: ионизация, возбуждение электронных, колебат. и вращат. уровней, диссоциация, рекомбинация. В плазме атомарных газов часто образуются кластеры и кластерные ионы ,напр. в плазме Аr происходят реакции:

15052-22.jpg

где Аr* - возбуждённый атом. В плазме молекулярных газов происходит диссоциация молекул при электронном ударе, при столкновениях с более тяжёлыми частицами, в т. ч. находящимися в метастабильном состоянии; при этом могут диссоциировать молекулы, находящиеся не только в основном, но и в возбуждённом состоянии. В плазме молекул с большим сродством к электрону может происходить диссоциативное прилипание электрона с образованием отрицат. иона, напр. НС1 + e15052-23.jpgCl- + H. Возможны также рекомбинация тяжёлых частиц в молекулы, диссоциативная рекомбинация молекулярных ионов с электронами и т. д. В плазме смеси газов осн. вклад в диссоциацию вносят передача энергии электронного возбуждения и перезарядка. Так, в плазме тлеющего разряда в смеси О2 и СО происходит реакция: О2 + СО*15052-24.jpg СО + 2О. В существенно неравновесной плазме (напр., при пониженном давлении) осн. роль играют реакции однократного электронного удара и реакции возбуждённых молекул и атомов, находящихся в метастабильных состояниях. В плазмохим. процессах, происходящих в ограниченном пространстве (реакторах), существенную роль играют процессы взаимодействия частиц плазмы с частицами поверхности стенок (гетерофазные реакции, адсорбция, диффузия, тепло- и массоперенос). Осуществлены реакции соединения в плазме Н2, О2, N2, C12, F2, CH4, CF4 и т. д. с углеводородами, полупроводниками, диэлектриками с образованием оксидов, нитридов, карбидов, боридов и т. д.
Плазмохимическая технология. В промышленных масштабах квазиравновесные и неравновесные плазмохим. процессы реализуют в тех случаях, когда в результате получаются чистые и высокочистые материалы, когда соединения обладают необычной структурой или уникальными свойствами, когда достигается высокий выход продуктов реакции. В плазмохим. процессах можно использовать широкодоступное и малоценное сырьё (напр., воздух), а также трудно перерабатываемое обычным способом сырьё или отходы разл. производств.
Технол. схема плазмохим. процесса кроме операций, присущих любому хим. процессу (подготовки сырья, сохранения, выделения и очистки целевого продукта), содержит стадии генерации плазмы, плазмохим. превращений и закалки. В генераторе плазмы происходит преобразование теплоносителя или реагента в плазменное состояние. Обычно в качестве генератора плазмы используется плазмотрон ,применяются также ударные трубы и мощные лазеры. В смесителе плазмохим. реактора образуется смесь плазмообразующего газа с остальными реагентами, обладающими задаваемыми параметрами, определяемыми термодинамикой и кинетикой процесса. При этом начинается хим. реакция, зависящая от организации смешения компонентов и продолжающаяся непосредственно в реакторе. Если необходимо, реакцию прекращают не непосредственно в реакторе. Прекращают реакцию на требуемой стадии резким снижением температуры в закалочном устройстве. Плазмохим. технологию применяют для органич. и неорганич. синтеза, для получения ультрадисперсных порошков, плёнок органич. и неорганич. материалов, для получения мембран разл. типов, травления, модификации поверхности разных материалов и изделий, обработки полимеров, получения световодов и т. д. П. используется в физ. и хим. анализе.

Литература по плазмохимии

  1. Теоретическая и прикладная плазмохимия, М., 1975;
  2. Плазмохимические реакции и процессы, под ред. Л. С. Полака, М., 1977;
  3. Цветков Ю. В., Панфилов С. А., Низкотемпературная плазма в процессе восстановления, М., 1980;
  4. Словецкий Д. И., Механизм химических реакций в неравновесной плазме, М., 1980;
  5. Полак Л. С., Михайлов А. С., Самоорганизация в неравновесных физико-химических системах, М., 1983;
  6. Русанов В. Д., Фридман А. А., Физика химически активной плазмы, М., 1984;
  7. Полак Л. С., Гольденберг М. Я., Левицкий А. А., Вычислительные методы в химической кинетике, М., 1984;
  8. Бугаенко Л. Т., Кульмин М. Г., Полак Л. С., Химия высоких энергий, М., 1988.<

Л. С. Полак

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution