Криогенная трансзвуковая аэродинамическая труба - трансзвуковая аэродинамическая
труба, в к-рой для получения больших значений Рейнольдса
числа Re используется охлаждение рабочего газа до криогенных температур,
лишь немного превышающих температуру его равновесной конденсации. При определении
аэродинамич. характеристик тел с учётом вклада вязкости воздуха (влияние трения
и вихреобра-зования) необходимо, чтобы число Re модели, испытываемой
в аэродинамич. трубе, равнялось числу Re летат. аппарата, движущегося
в атмосфере. В обычных трансзвуковых аэродинамич. трубах для получения больших
значений числа (где
- скорость полёта,
l - характерный размер тела, -
плотность, - коэф.
динамич. вязкости воздуха) увеличивают плотность
газа, обтекающего модель, повышая давление в рабочей части при неизменной теми-ре,
и увеличивают размер испытуемой модели l. При этом быстро растёт мощность
привода аэродинамич. трубы пропорционально (при неизменной скорости )
плотности и квадрату
линейного размера l2.
С уменьшением температуры рабочего
газа при неизменных давлении и Маха числе М=
(где а - местная скорость звука) вязкость уменьшается, а плотность
растёт и, хотя скорость
падает, число Рейнольдса Re обтекания модели фиксиров. размера l увеличивается.
Т. к. скоростной напор обтекающего модель потока
не изменяется при уменьшении температуры, то действующие на модель силы, пропорциональные
скоростному напору (см. Аэродинамические коэффициенты ),в
Сравнительные характеристики
обычных и криогенных трансзвуковых аэродинамических труб: 1 - область
характеристик обычных трансзвуковых аэродинамических труб: 2 - криогенных
- существующие
самолёты; -
проектируемые самолёты.
К. т. а. т. не увеличиваются
с ростом числа Re. По схеме К. т. а. т. аналогична обычной трансзвуковой
аэродинамич. трубе, но для снижения температуры рабочего газа в него через систему
форсунок впрыскивается жидкий азот. На рис. в качестве примера приведены области
режимов моделирования, обеспечиваемые обычными трансзвуковыми аэродинамич. трубами
и NTF (национальной трансзвуковой аэродинамич. трубой) NASA, а также крейсерские
режимы полёта транспортных самолётов. Труба NTF имеет поперечные размеры рабочей
части 2,52,5
м, работает при давлении
9 атм, температуре торможения 78-340 К и макс. расходе жидкого азота 550 кг/с.
Литература по криогенной трансзвуковой аэродинамической трубе
Состояние разработок в области создания криогенных аэродинамических труб, М., 1986;
Polhamus E. С., The large second generation of cryogenic tunnels, "Astron. and Aeronautics", 1981, v. 19, № 10, p. 38.
Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет) При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов. Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.